boofcv.alg.geo.pose.P3PGrunert Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-geo Show documentation
Show all versions of boofcv-geo Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.geo.pose;
import georegression.struct.point.Point2D_F64;
import org.ddogleg.solver.Polynomial;
import org.ddogleg.solver.PolynomialRoots;
import org.ddogleg.struct.DogArray;
import org.ejml.data.Complex_F64;
import java.util.List;
/**
*
* Solves for the 3 unknown distances between camera center and 3 observed points by finding the roots of a 4th order
* polynomial, This is probably the first solution to the P3P problem and first proposed in 1841 by Grunert. This
* implementation is based off the discussion in [1]. There are up to four solutions.
*
*
* See {@link P3PLineDistance} for a more detailed problem description.
*
*
* [1] Haralick, Robert M. and Lee, Chung-Nan and Ottenberg, Karsten and Nolle, Michael, "Review and analysis of
* solutions of the three point perspective pose estimation problem" Int. J. Comput. Vision, 1994 vol 13, no. 13,
* pages 331-356
*
*
* @author Peter Abeles
*/
public class P3PGrunert implements P3PLineDistance {
// used to solve the 4th order polynomial
private PolynomialRoots rootFinder;
// polynomial which is to be solved
private Polynomial poly = new Polynomial(5);
// storage for solutions
private DogArray solutions = new DogArray<>(4, PointDistance3::new);
/**
* Specifies the polynomial root finder.
*
* @param rootFinder Root finder for real 4th order roots.
*/
public P3PGrunert( PolynomialRoots rootFinder ) {
this.rootFinder = rootFinder;
}
@Override
public boolean process( Point2D_F64 obs1, Point2D_F64 obs2, Point2D_F64 obs3,
double length23, double length13, double length12 ) {
double cos12 = computeCosine(obs1, obs2);
double cos13 = computeCosine(obs1, obs3);
double cos23 = computeCosine(obs2, obs3);
double a = length23, b = length13, c = length12;
// divide out numbers before multiplying them. less overflow/underflow that way
double a2_div_b2 = (a/b)*(a/b);
double c2_div_b2 = (c/b)*(c/b);
double a2_m_c2_div_b2 = a2_div_b2 - c2_div_b2;
double a2_p_c2_div_b2 = a2_div_b2 + c2_div_b2;
poly.c[0] = -4*a2_div_b2*pow2(cos12) + pow2(a2_m_c2_div_b2 + 1);
poly.c[1] = 4*(-a2_m_c2_div_b2*(1 + a2_m_c2_div_b2)*cos13 + 2*a2_div_b2*pow2(cos12)*cos13 - (1 - a2_p_c2_div_b2)*cos23*cos12);
poly.c[2] = 2*(pow2(a2_m_c2_div_b2) - 1 + 2*pow2(a2_m_c2_div_b2)*pow2(cos13) + 2*(1 - c2_div_b2)*pow2(cos23) - 4*a2_p_c2_div_b2*cos12*cos13*cos23 + 2*(1 - a2_div_b2)*pow2(cos12));
poly.c[3] = 4*(a2_m_c2_div_b2*(1 - a2_m_c2_div_b2)*cos13 - (1 - a2_p_c2_div_b2)*cos23*cos12 + 2*c2_div_b2*pow2(cos23)*cos13);
poly.c[4] = -4*c2_div_b2*cos23*cos23 + pow2(a2_m_c2_div_b2 - 1);
// solve for real roots
solutions.reset();
if (!rootFinder.process(poly))
return false;
List roots = rootFinder.getRoots();
for (int rootIdx = 0; rootIdx < roots.size(); rootIdx++) {
Complex_F64 r = roots.get(rootIdx);
if (!r.isReal()) {
continue;
}
double v = r.real;
double u = ((-1 + a2_div_b2 - c2_div_b2)*v*v - 2*(a2_div_b2 - c2_div_b2)*cos13*v + 1 + a2_div_b2 - c2_div_b2)/
(2*(cos12 - v*cos23));
// compute the distance of each point
PointDistance3 s = solutions.grow();
s.dist1 = Math.sqrt(a*a/(u*u + v*v - 2*u*v*cos23));
s.dist2 = s.dist1*u;
s.dist3 = s.dist1*v;
}
return solutions.size() != 0;
}
public static double pow2( double a ) {
return a*a;
}
public static double computeCosine( Point2D_F64 a, Point2D_F64 b ) {
double top = a.x*b.x + a.y*b.y + 1;
double bottom = Math.sqrt(a.x*a.x + a.y*a.y + 1)*Math.sqrt(b.x*b.x + b.y*b.y + 1);
return top/bottom;
}
@Override
public DogArray getSolutions() {
return solutions;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy