All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.pose.PnPInfinitesimalPlanePoseEstimation Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.pose;

import boofcv.abst.geo.Estimate1ofEpipolar;
import boofcv.factory.geo.FactoryMultiView;
import boofcv.struct.geo.AssociatedPair;
import georegression.geometry.GeometryMath_F64;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.se.Se3_F64;
import georegression.transform.se.SePointOps_F64;
import org.ddogleg.struct.DogArray;
import org.ejml.UtilEjml;
import org.ejml.data.DMatrix2x2;
import org.ejml.data.DMatrix3x3;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.fixed.CommonOps_DDF2;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.ops.DConvertMatrixStruct;

import java.util.List;

/**
 * 

A plane based pose estimation algorithm [1]. Works by first finding the homography between two sets of 2D points. Then * solve for the pose using 3D pose information of the points. Since this is plane based the 3D points must all * lie on a plane (z=0). A minimum of 4 points is required to estimate the pose. The planar assumption enables * it to run very fast and accurately.

* *

[1] Collins, Toby, and Adrien Bartoli. "Infinitesimal plane-based pose estimation." International journal * of computer vision 109.3 (2014): 252-286.

* * @author Peter Abeles */ public class PnPInfinitesimalPlanePoseEstimation { // Computes the homography Estimate1ofEpipolar estimateHomography; // Offset required to center points in world Point2D_F64 center = new Point2D_F64(); Vector3D_F64 center3 = new Vector3D_F64(); // Homography matrix DMatrixRMaj H = new DMatrixRMaj(3, 3); // final pose estimates Se3_F64 pose0 = new Se3_F64(); Se3_F64 pose1 = new Se3_F64(); double error0, error1; //=========== Internal workspace // J is a 2x2 matrix // v is a 2x1 vector DMatrix2x2 J = new DMatrix2x2(); double v1, v2; private final DMatrixRMaj K_x = new DMatrixRMaj(3, 3); DMatrixRMaj R_v = new DMatrixRMaj(3, 3); private final DMatrixRMaj tmp = new DMatrixRMaj(3, 3); private final DMatrix2x2 A = new DMatrix2x2(); private final DMatrix2x2 AA = new DMatrix2x2(); private final DMatrix2x2 B = new DMatrix2x2(); private final DMatrix2x2 R22 = new DMatrix2x2(); private final Vector3D_F64 l0 = new Vector3D_F64(); private final Vector3D_F64 l1 = new Vector3D_F64(); private final Vector3D_F64 ca = new Vector3D_F64(); // Used to solve for translation private final DMatrixRMaj W = new DMatrixRMaj(1, 3); private final DMatrixRMaj WW = new DMatrixRMaj(3, 3); private final DMatrixRMaj y = new DMatrixRMaj(1, 1); private final DMatrixRMaj Wty = new DMatrixRMaj(1, 1); // Input adjust centering it DogArray pointsAdj = new DogArray<>(AssociatedPair::new); Point3D_F64 tmpP = new Point3D_F64(); public PnPInfinitesimalPlanePoseEstimation( Estimate1ofEpipolar estimateHomography ) { this.estimateHomography = estimateHomography; } public PnPInfinitesimalPlanePoseEstimation() { this(FactoryMultiView.homographyTLS()); } /** * Estimates the transform from world coordinate system to camera given known points and observations. * For each observation p1=World 3D location. z=0 is implicit. p2=Observed location of points in image in * normalized image coordinates * * @param points List of world coordinates in 2D (p1) and normalized image coordinates (p2) * @return true if successful or false if it fails to estimate */ public boolean process( List points ) { if (points.size() < estimateHomography.getMinimumPoints()) throw new IllegalArgumentException("At least " + estimateHomography.getMinimumPoints() + " must be provided"); // center location of points in model zeroMeanWorldPoints(points); // make sure there are no accidental references to the original points points = pointsAdj.toList(); if (!estimateHomography.process(points, H)) return false; // make sure H[2,2] == 1 CommonOps_DDRM.divide(H, H.get(2, 2)); // Jacobian of pi(H[u_0 1]^T) at u_0 = 0 // pi is plane to image transform J.a11 = H.unsafe_get(0, 0) - H.unsafe_get(2, 0)*H.unsafe_get(0, 2); J.a12 = H.unsafe_get(0, 1) - H.unsafe_get(2, 1)*H.unsafe_get(0, 2); J.a21 = H.unsafe_get(1, 0) - H.unsafe_get(2, 0)*H.unsafe_get(1, 2); J.a22 = H.unsafe_get(1, 1) - H.unsafe_get(2, 1)*H.unsafe_get(1, 2); // v = (H[0,1],H[1,2]) = pi(H[u_0 1]^T) at u_0 = 0 // projection of u_0 into normalized coordinates v1 = H.unsafe_get(0, 2); v2 = H.unsafe_get(1, 2); // Solve for rotations IPPE(pose0.R, pose1.R); // Solve for translations estimateTranslation(pose0.R, points, pose0.T); estimateTranslation(pose1.R, points, pose1.T); // compute the reprojection error for each pose error0 = computeError(points, pose0); error1 = computeError(points, pose1); // Make sure the best pose is the first one if (error0 > error1) { double e = error0; error0 = error1; error1 = e; Se3_F64 s = pose0; pose0 = pose1; pose1 = s; } // Undo centering adjustment center3.setTo(-center.x, -center.y, 0); GeometryMath_F64.addMult(pose0.T, pose0.R, center3, pose0.T); GeometryMath_F64.addMult(pose1.T, pose1.R, center3, pose1.T); return true; } /** * Computes reprojection error to select best model */ double computeError( List points, Se3_F64 worldToCamera ) { double error = 0; for (int i = 0; i < points.size(); i++) { AssociatedPair pair = points.get(i); tmpP.setTo(pair.p1.x, pair.p1.y, 0); SePointOps_F64.transform(worldToCamera, tmpP, tmpP); error += pair.p2.distance2(tmpP.x/tmpP.z, tmpP.y/tmpP.z); } return Math.sqrt(error/points.size()); } /** * Ensure zero mean for world location. Creates a local copy of the input */ private void zeroMeanWorldPoints( List points ) { center.setTo(0, 0); pointsAdj.reset(); for (int i = 0; i < points.size(); i++) { AssociatedPair pair = points.get(i); Point2D_F64 p = pair.p1; pointsAdj.grow().p2.setTo(pair.p2); center.x += p.x; center.y += p.y; } center.x /= points.size(); center.y /= points.size(); for (int i = 0; i < points.size(); i++) { Point2D_F64 p = points.get(i).p1; pointsAdj.get(i).p1.setTo(p.x - center.x, p.y - center.y); } } /** * Estimate's the translation given the previously found rotation * * @param R Rotation matrix * @param T (Output) estimated translation */ void estimateTranslation( DMatrixRMaj R, List points, Vector3D_F64 T ) { final int N = points.size(); W.reshape(N*2, 3); y.reshape(N*2, 1); Wty.reshape(3, 1); DMatrix3x3 Rtmp = new DMatrix3x3(); DConvertMatrixStruct.convert(R, Rtmp); int indexY = 0, indexW = 0; for (int i = 0; i < N; i++) { AssociatedPair p = points.get(i); // rotate into camera frame double u1 = Rtmp.a11*p.p1.x + Rtmp.a12*p.p1.y; double u2 = Rtmp.a21*p.p1.x + Rtmp.a22*p.p1.y; double u3 = Rtmp.a31*p.p1.x + Rtmp.a32*p.p1.y; W.data[indexW++] = 1; W.data[indexW++] = 0; W.data[indexW++] = -p.p2.x; W.data[indexW++] = 0; W.data[indexW++] = 1; W.data[indexW++] = -p.p2.y; y.data[indexY++] = p.p2.x*u3 - u1; y.data[indexY++] = p.p2.y*u3 - u2; } //======= Compute Pseudo Inverse // WW = inv(W^T*W) CommonOps_DDRM.multTransA(W, W, WW); CommonOps_DDRM.invert(WW); // W^T*y CommonOps_DDRM.multTransA(W, y, Wty); // translation = inv(W^T*W)*W^T*y W.reshape(3, 1); CommonOps_DDRM.mult(WW, Wty, W); T.x = W.data[0]; T.y = W.data[1]; T.z = W.data[2]; } /** * Solves the IPPE problem */ protected void IPPE( DMatrixRMaj R1, DMatrixRMaj R2 ) { // Equation 23 - Compute R_v from v double norm_v = Math.sqrt(v1*v1 + v2*v2); if (norm_v <= UtilEjml.EPS) { // the plane is fronto-parallel to the camera, so set the corrective rotation Rv to identity. // There will be only one solution to pose. CommonOps_DDRM.setIdentity(R_v); } else { compute_Rv(); } // [B|0] = [I2|-v]*R_v compute_B(B, R_v, v1, v2); CommonOps_DDF2.invert(B, B); // A = inv(B)*J CommonOps_DDF2.mult(B, J, A); // Find the largest singular value of A double gamma = largestSingularValue2x2(A); // Compute R22 from A CommonOps_DDF2.scale(1.0/gamma, A, R22); // B = I2 - R22^T * Rss CommonOps_DDF2.setIdentity(B); CommonOps_DDF2.multAddTransA(-1, R22, R22, B); double b1 = Math.sqrt(B.a11); double b2 = Math.signum(B.a12)*Math.sqrt(B.a22); // [c;a] = [R22;b^T]*[1;0] cross [R22;b^T]*[0;1] l0.setTo(R22.a11, R22.a21, b1); l1.setTo(R22.a12, R22.a22, b2); ca.crossSetTo(l0, l1); // ca = [c;a] // This will be the solution for the two rotation matrices // R1 = R_v*[R22, +c; b^T , a ] constructR(R1, R_v, R22, b1, b2, ca, 1, tmp); constructR(R2, R_v, R22, b1, b2, ca, -1, tmp); } /** * R = R_v*[R22, sgn*c; sgn*b^T , a ] */ static void constructR( DMatrixRMaj R, DMatrixRMaj R_v, DMatrix2x2 R22, double b1, double b2, Vector3D_F64 ca, double sign, DMatrixRMaj tmp ) { tmp.data[0] = R22.a11; tmp.data[1] = R22.a12; tmp.data[2] = sign*ca.x; tmp.data[3] = R22.a21; tmp.data[4] = R22.a22; tmp.data[5] = sign*ca.y; tmp.data[6] = sign*b1; tmp.data[7] = sign*b2; tmp.data[8] = ca.z; CommonOps_DDRM.mult(R_v, tmp, R); } /** * [B|0] = [I2|-v]*R_v */ static void compute_B( DMatrix2x2 B, DMatrixRMaj R_v, double v1, double v2 ) { B.a11 = R_v.data[0] + R_v.data[6]*-v1; B.a12 = R_v.data[1] + R_v.data[7]*-v1; B.a21 = R_v.data[3] + R_v.data[6]*-v2; B.a22 = R_v.data[4] + R_v.data[7]*-v2; } double largestSingularValue2x2( DMatrix2x2 A ) { // Possible more numerically stable version found online // double a = A.a11,b = A.a12, c = A.a21, d = A.a22; // double Theta = 0.5 * Math.atan2(2*a*c + 2*b*d, a*a + b*b - c*c - d*d); // double Phi = 0.5 * Math.atan2(2*a*b + 2*c*d, a*a - b*b + c*c - d*d); // double s11 = ( a* cos(Theta) + c*sin(Theta))*cos(Phi) + ( b*cos(Theta) + d*sin(Theta))*sin(Phi); // double s22 = ( a*sin(Theta) - c*cos(Theta))*sin(Phi) + (-b*sin(Theta) + d*cos(Theta))*cos(Phi); // return s11; // Equation 22 in the paper is incorrect. It's missing the outer square root. // When trying to figure out what was going on people mentioned that this form of the equation is prone // to numerical cancellation CommonOps_DDF2.multTransB(A, A, AA); double d = AA.a11 - AA.a22; return Math.sqrt(0.5*(AA.a11 + AA.a22 + Math.sqrt(d*d + 4*AA.a12*AA.a12))); } /** * R_v is a 3x3 matrix * R_v = I + sin(theta)*[k]_x + (1-cos(theta))[k]_x^2 */ void compute_Rv() { double t = Math.sqrt(v1*v1 + v2*v2); double s = Math.sqrt(t*t + 1); double cosT = 1.0/s; double sinT = Math.sqrt(1 - 1.0/(s*s)); K_x.data[0] = 0; K_x.data[1] = 0; K_x.data[2] = v1; K_x.data[3] = 0; K_x.data[4] = 0; K_x.data[5] = v2; K_x.data[6] = -v1; K_x.data[7] = -v2; K_x.data[8] = 0; CommonOps_DDRM.divide(K_x, t); CommonOps_DDRM.setIdentity(R_v); CommonOps_DDRM.addEquals(R_v, sinT, K_x); CommonOps_DDRM.multAdd(1.0 - cosT, K_x, K_x, R_v); } public DMatrixRMaj getHomography() { return H; } public int getMinimumPoints() { return estimateHomography.getMinimumPoints(); } public Se3_F64 getWorldToCamera0() { return pose0; } public Se3_F64 getWorldToCamera1() { return pose1; } public double getError0() { return error0; } public double getError1() { return error1; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy