All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.pose.PnPLepetitEPnP Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.pose;

import georegression.fitting.MotionTransformPoint;
import georegression.fitting.se.FitSpecialEuclideanOps_F64;
import georegression.geometry.UtilPoint3D_F64;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import georegression.struct.se.Se3_F64;
import org.ddogleg.struct.DogArray;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.SingularOps_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.dense.row.factory.LinearSolverFactory_DDRM;
import org.ejml.dense.row.linsol.svd.SolveNullSpaceSvd_DDRM;
import org.ejml.dense.row.mult.MatrixVectorMult_DDRM;
import org.ejml.interfaces.SolveNullSpace;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F64;
import org.ejml.interfaces.linsol.LinearSolverDense;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
 * 

* Implementation of the EPnP algorithm from [1] for solving the PnP problem when N ≥ 5 for the general case * and N ≥ 4 for planar data (see note below). Given a calibrated camera, n pairs of 2D point observations and the known 3D * world coordinates, it solves the for camera's pose.. This solution is non-iterative and claims to be much * faster and more accurate than the alternatives. Works for both planar and non-planar configurations. *

* *

* Expresses the N 3D point as a weighted sum of four virtual control points. Problem then becomes to estimate * the coordinates of the control points in the camera referential, which can be done in O(n) time. *

* *

* After estimating the control points the solution can be refined using Gauss Newton non-linear * optimization. The objective function being optimizes * reduces the difference between world and camera control point distances by adjusting * the values of beta. Optimization is very fast, but can degrade accuracy if over optimized. * See warning below. To turn on non-linear optimization set {@link #setNumIterations(int)} to * a positive number. *

* *

* After experimentation there doesn't seem to be any universally best way to choose the control * point distribution. To allow tuning for specific problems the 'magic number' has been provided. * Larger values increase the control point distribution's size. In general smaller numbers appear * to be better for noisier data, but can degrade results if too small. *

* *

* MINIMUM POINTS: According to the original paper [1] only 4 points are needed for the general case. * In practice it produces very poor results on average. The matlab code provided by the original author * also exhibits instability in the minimum case. The article also does not show results for the minimum * case, making it hard to judge what should be expected. However, I'm not ruling out there being a bug * in relinearization. See that code for comments. Correspondence with the original author indicates that * he did not expect results from relinearization to be as accurate as the other cases. *

* *

* NOTES: This implementation deviates in some minor ways from what was described in the paper. However, their * own example code (Matlab and C++) are mutually different in significant ways too. See how solutions are scored, * linear systems are solved, and how world control points are computed. How control points are computed here * is inspired from their C++ example (technique used in their matlab example has some stability issues), but * there is probably room for more improvement. *

* *

* WARNING: Setting the number of optimization iterations too high can actually degrade accuracy. The * objective function being minimized is not observation residuals. Locally it appears * to be a good approximation, but can diverge and actually produce worse results. Because * of this behavior, more advanced optimization routines are unnecessary and counter productive. *

* *

* [1] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua, "EPnP: An Accurate O(n) Solution to the PnP Problem" * Int. J. Comput. Visionm, vol 81, issue 2, 2009 *

* * @author Peter Abeles */ // TODO change so that it returns a list of N solutions and let other algorithm select the best? Re-read the paper public class PnPLepetitEPnP { // used to solve various linear problems private final SolveNullSpace solverNull = new SolveNullSpaceSvd_DDRM(); DMatrixRMaj nullspace = new DMatrixRMaj(1, 1); private final SingularValueDecomposition_F64 svd = DecompositionFactory_DDRM.svd(12, 12, false, true, false); private final LinearSolverDense solver = LinearSolverFactory_DDRM.leastSquares(6, 4); private final LinearSolverDense solverPinv = LinearSolverFactory_DDRM.pseudoInverse(true); // weighting factor to go from control point into world coordinate protected DMatrixRMaj alphas = new DMatrixRMaj(1, 1); private final DMatrixRMaj M = new DMatrixRMaj(12, 12); private final DMatrixRMaj MM = new DMatrixRMaj(12, 12); // linear constraint matrix protected DMatrixRMaj L_full = new DMatrixRMaj(6, 10); private final DMatrixRMaj L = new DMatrixRMaj(6, 6); // distance of world control points from each other protected DMatrixRMaj y = new DMatrixRMaj(6, 1); // solution for betas private final DMatrixRMaj x = new DMatrixRMaj(6, 1); // how many controls points 4 for general case and 3 for planar protected int numControl; // control points extracted from the null space of M'M protected List[] nullPts = new ArrayList[4]; // control points in world coordinate frame protected DogArray controlWorldPts = new DogArray<>(4, Point3D_F64::new); // list of found solutions private final List solutions = new ArrayList<>(); protected DogArray solutionPts = new DogArray<>(4, Point3D_F64::new); // estimates rigid body motion between two associated sets of points private final MotionTransformPoint motionFit = FitSpecialEuclideanOps_F64.fitPoints3D(); // mean location of world points private final Point3D_F64 meanWorldPts = new Point3D_F64(); // number of iterations it will perform private int numIterations; // adjusts world control point distribution private final double magicNumber; // handles the hard case #4 Relinearlize relinearizeBeta = new Relinearlize(); // declaring data for local use inside a function // in general its good to avoid declaring and destroying massive amounts of data in Java // this is probably going too far though private final List tempPts0 = new ArrayList<>(); // 4 points stored in it DMatrixRMaj A_temp = new DMatrixRMaj(1, 1); DMatrixRMaj v_temp = new DMatrixRMaj(3, 1); DMatrixRMaj w_temp = new DMatrixRMaj(1, 1); /** * Constructor which uses the default magic number */ public PnPLepetitEPnP() { this(0.1); } /** * Constructor which allows configuration of the magic number. * * @param magicNumber Magic number changes distribution of world control points. * Values less than one seem to work best. Try 0.1 */ public PnPLepetitEPnP( double magicNumber ) { this.magicNumber = magicNumber; // just a sanity check if (motionFit.getMinimumPoints() > 4) throw new IllegalArgumentException("Crap"); for (int i = 0; i < 4; i++) { tempPts0.add(new Point3D_F64()); nullPts[i] = new ArrayList<>(); solutions.add(new double[4]); for (int j = 0; j < 4; j++) { nullPts[i].add(new Point3D_F64()); } } } /** * Used to turn on and off non-linear optimization. To turn on set to a positive number. * See warning in class description about setting the number of iterations too high. * * @param numIterations Number of iterations. Try 10. */ public void setNumIterations( int numIterations ) { this.numIterations = numIterations; } /** * Compute camera motion given a set of features with observations and 3D locations * * @param worldPts Known location of features in 3D world coordinates * @param observed Observed location of features in normalized camera coordinates * @param solutionModel Output: Storage for the found solution. */ public void process( List worldPts, List observed, Se3_F64 solutionModel ) { if (worldPts.size() < 4) throw new IllegalArgumentException("Must provide at least 4 points"); if (worldPts.size() != observed.size()) throw new IllegalArgumentException("Must have the same number of observations and world points"); // select world control points using the points statistics selectWorldControlPoints(worldPts, controlWorldPts); // compute barycentric coordinates for the world control points computeBarycentricCoordinates(controlWorldPts, alphas, worldPts); // create the linear system whose null space will contain the camera control points constructM(observed, alphas, M); // the camera points are a linear combination of these null points extractNullPoints(M); // compute the full constraint matrix, the others are extracted from this if (numControl == 4) { L_full.reshape(6, 10); y.reshape(6, 1); UtilLepetitEPnP.constraintMatrix6x10(L_full, y, controlWorldPts, nullPts); // compute 4 solutions using the null points estimateCase1(solutions.get(0)); estimateCase2(solutions.get(1)); estimateCase3(solutions.get(2)); // results are bad in general, so skip unless needed // always considering this case seems to hurt runtime speed a little bit if (worldPts.size() == 4) estimateCase4(solutions.get(3)); } else { L_full.reshape(3, 6); y.reshape(3, 1); UtilLepetitEPnP.constraintMatrix3x6(L_full, y, controlWorldPts, nullPts); estimateCase1(solutions.get(0)); estimateCase2(solutions.get(1)); if (worldPts.size() == 3) estimateCase3_planar(solutions.get(2)); } computeResultFromBest(solutionModel); } /** * Selects the best motion hypothesis based on the actual observations and optionally * optimizes the solution. */ private void computeResultFromBest( Se3_F64 solutionModel ) { double bestScore = Double.MAX_VALUE; int bestSolution = -1; for (int i = 0; i < numControl; i++) { double score = score(solutions.get(i)); if (score < bestScore) { bestScore = score; bestSolution = i; } // System.out.println(i+" score "+score); } double[] solution = solutions.get(bestSolution); if (numIterations > 0) { gaussNewton(solution); } UtilLepetitEPnP.computeCameraControl(solution, nullPts, solutionPts, numControl); motionFit.process(controlWorldPts.toList(), solutionPts.toList()); solutionModel.setTo(motionFit.getTransformSrcToDst()); } /** * Score a solution based on distance between control points. Closer the camera * control points are from the world control points the better the score. This is * similar to how optimization score works and not the way recommended in the original * paper. */ private double score( double[] betas ) { UtilLepetitEPnP.computeCameraControl(betas, nullPts, solutionPts, numControl); double score = 0; for (int i = 0; i < numControl; i++) { Point3D_F64 si = solutionPts.get(i); Point3D_F64 wi = controlWorldPts.get(i); for (int j = i + 1; j < numControl; j++) { double ds = si.distance(solutionPts.get(j)); double dw = wi.distance(controlWorldPts.get(j)); score += (ds - dw)*(ds - dw); } } return score; } /** * Selects control points along the data's axis and the data's centroid. If the data is determined * to be planar then only 3 control points are selected. * * The data's axis is determined by computing the covariance matrix then performing SVD. The axis * is contained along the */ public void selectWorldControlPoints( List worldPts, DogArray controlWorldPts ) { UtilPoint3D_F64.mean(worldPts, meanWorldPts); // covariance matrix elements, summed up here for speed double c11 = 0, c12 = 0, c13 = 0, c22 = 0, c23 = 0, c33 = 0; final int N = worldPts.size(); for (int i = 0; i < N; i++) { Point3D_F64 p = worldPts.get(i); double dx = p.x - meanWorldPts.x; double dy = p.y - meanWorldPts.y; double dz = p.z - meanWorldPts.z; c11 += dx*dx;c12 += dx*dy;c13 += dx*dz; c22 += dy*dy;c23 += dy*dz; c33 += dz*dz; } c11/=N;c12/=N;c13/=N;c22/=N;c23/=N;c33/=N; DMatrixRMaj covar = new DMatrixRMaj(3, 3, true, c11, c12, c13, c12, c22, c23, c13, c23, c33); // find the data's orientation and check to see if it is planar svd.decompose(covar); double[] singularValues = svd.getSingularValues(); DMatrixRMaj V = svd.getV(null, false); SingularOps_DDRM.descendingOrder(null, false, singularValues, 3, V, false); // planar check if (singularValues[0] < singularValues[2]*1e13) { numControl = 4; } else { numControl = 3; } // put control points along the data's major axises controlWorldPts.reset(); for (int i = 0; i < numControl - 1; i++) { double m = Math.sqrt(singularValues[1])*magicNumber; double vx = V.unsafe_get(0, i)*m; double vy = V.unsafe_get(1, i)*m; double vz = V.unsafe_get(2, i)*m; controlWorldPts.grow().setTo(meanWorldPts.x + vx, meanWorldPts.y + vy, meanWorldPts.z + vz); } // set a control point to be the centroid controlWorldPts.grow().setTo(meanWorldPts.x, meanWorldPts.y, meanWorldPts.z); } /** *

* Given the control points it computes the 4 weights for each camera point. This is done by * solving the following linear equation: C*α=X. where C is the control point matrix, * α is the 4 by n matrix containing the solution, and X is the camera point matrix. * N is the number of points. *

*

* C = [ controlPts' ; ones(1,4) ]
* X = [ cameraPts' ; ones(1,N) ] *

*/ protected void computeBarycentricCoordinates( DogArray controlWorldPts, DMatrixRMaj alphas, List worldPts ) { alphas.reshape(worldPts.size(), numControl, false); v_temp.reshape(3, 1); A_temp.reshape(3, numControl - 1); for (int i = 0; i < numControl - 1; i++) { Point3D_F64 c = controlWorldPts.get(i); A_temp.set(0, i, c.x - meanWorldPts.x); A_temp.set(1, i, c.y - meanWorldPts.y); A_temp.set(2, i, c.z - meanWorldPts.z); } // invert the matrix solverPinv.setA(A_temp); A_temp.reshape(A_temp.numCols, A_temp.numRows); solverPinv.invert(A_temp); w_temp.reshape(numControl - 1, 1); for (int i = 0; i < worldPts.size(); i++) { Point3D_F64 p = worldPts.get(i); v_temp.data[0] = p.x - meanWorldPts.x; v_temp.data[1] = p.y - meanWorldPts.y; v_temp.data[2] = p.z - meanWorldPts.z; MatrixVectorMult_DDRM.mult(A_temp, v_temp, w_temp); int rowIndex = alphas.numCols*i; for (int j = 0; j < numControl - 1; j++) alphas.data[rowIndex++] = w_temp.data[j]; if (numControl == 4) alphas.data[rowIndex] = 1 - w_temp.data[0] - w_temp.data[1] - w_temp.data[2]; else alphas.data[rowIndex] = 1 - w_temp.data[0] - w_temp.data[1]; } } /** * Constructs the linear system which is to be solved. * * sum a_ij*x_j - a_ij*u_i*z_j = 0 * sum a_ij*y_j - a_ij*v_i*z_j = 0 * * where (x,y,z) is the control point to be solved for. * (u,v) is the observed normalized point */ protected static void constructM( List obsPts, DMatrixRMaj alphas, DMatrixRMaj M ) { int N = obsPts.size(); M.reshape(3*alphas.numCols, 2*N, false); for (int i = 0; i < N; i++) { Point2D_F64 p2 = obsPts.get(i); int row = i*2; for (int j = 0; j < alphas.numCols; j++) { int col = j*3; double alpha = alphas.unsafe_get(i, j); // TODO Investigate rows and columns being swapped here. Explain or fix M.unsafe_set(col, row, alpha); M.unsafe_set(col + 1, row, 0); M.unsafe_set(col + 2, row, -alpha*p2.x); M.unsafe_set(col, row + 1, 0); M.unsafe_set(col + 1, row + 1, alpha); M.unsafe_set(col + 2, row + 1, -alpha*p2.y); } } } /** * Computes M'*M and finds the null space. The 4 eigenvectors with the smallest eigenvalues are found * and the null points extracted from them. */ protected void extractNullPoints( DMatrixRMaj M ) { // compute MM and find its null space MM.reshape(M.numRows, M.numRows, false); CommonOps_DDRM.multTransB(M, M, MM); if (!solverNull.process(MM, numControl, nullspace)) throw new IllegalArgumentException("SVD failed?!?!"); // extract null points from the null space for (int i = 0; i < numControl; i++) { int column = numControl - i - 1; for (int j = 0; j < numControl; j++) { Point3D_F64 p = nullPts[i].get(j); p.x = nullspace.get(j*3 + 0, column); p.y = nullspace.get(j*3 + 1, column); p.z = nullspace.get(j*3 + 2, column); } } } /** * Examines the distance each point is from the centroid to determine the scaling difference * between world control points and the null points. */ protected double matchScale( List nullPts, DogArray controlWorldPts ) { Point3D_F64 meanNull = UtilPoint3D_F64.mean(nullPts, numControl, null); Point3D_F64 meanWorld = UtilPoint3D_F64.mean(controlWorldPts.toList(), numControl, null); // compute the ratio of distance between world and null points from the centroid double top = 0; double bottom = 0; for (int i = 0; i < numControl; i++) { Point3D_F64 wi = controlWorldPts.get(i); Point3D_F64 ni = nullPts.get(i); double dwx = wi.x - meanWorld.x; double dwy = wi.y - meanWorld.y; double dwz = wi.z - meanWorld.z; double dnx = ni.x - meanNull.x; double dny = ni.y - meanNull.y; double dnz = ni.z - meanNull.z; double n2 = dnx*dnx + dny*dny + dnz*dnz; double w2 = dwx*dwx + dwy*dwy + dwz*dwz; top += w2; bottom += n2; } // compute beta return Math.sqrt(top/bottom); } /** * Use the positive depth constraint to determine the sign of beta */ private double adjustBetaSign( double beta, List nullPts ) { if (beta == 0) return 0; int N = alphas.numRows; int positiveCount = 0; for (int i = 0; i < N; i++) { double z = 0; for (int j = 0; j < numControl; j++) { Point3D_F64 c = nullPts.get(j); z += alphas.get(i, j)*c.z; } if (z > 0) positiveCount++; } if (positiveCount < N/2) beta *= -1; return beta; } /** * Given the set of betas it computes a new set of control points and adjust sthe scale * using the {@link #matchScale} function. */ private void refine( double[] betas ) { for (int i = 0; i < numControl; i++) { double x = 0, y = 0, z = 0; for (int j = 0; j < numControl; j++) { Point3D_F64 p = nullPts[j].get(i); x += betas[j]*p.x; y += betas[j]*p.y; z += betas[j]*p.z; } tempPts0.get(i).setTo(x, y, z); } double adj = matchScale(tempPts0, controlWorldPts); adj = adjustBetaSign(adj, tempPts0); for (int i = 0; i < 4; i++) { betas[i] *= adj; } } /** * Simple analytical solution. Just need to solve for the scale difference in one set * of potential control points. */ protected void estimateCase1( double[] betas ) { betas[0] = matchScale(nullPts[0], controlWorldPts); betas[0] = adjustBetaSign(betas[0],nullPts[0]); betas[1] = 0; betas[2] = 0; betas[3] = 0; } protected void estimateCase2( double[] betas ) { x.reshape(3, 1, false); if (numControl == 4) { L.reshape(6, 3, false); UtilLepetitEPnP.constraintMatrix6x3(L_full, L); } else { L.reshape(3, 3, false); UtilLepetitEPnP.constraintMatrix3x3(L_full, L); } if (!solver.setA(L)) throw new RuntimeException("Oh crap"); solver.solve(y, x); betas[0] = Math.sqrt(Math.abs(x.get(0))); betas[1] = Math.sqrt(Math.abs(x.get(2))); betas[1] *= Math.signum(x.get(0))*Math.signum(x.get(1)); betas[2] = 0; betas[3] = 0; refine(betas); } protected void estimateCase3( double[] betas ) { Arrays.fill(betas, 0); x.reshape(6, 1, false); L.reshape(6, 6, false); UtilLepetitEPnP.constraintMatrix6x6(L_full, L); if (!solver.setA(L)) throw new RuntimeException("Oh crap"); solver.solve(y, x); betas[0] = Math.sqrt(Math.abs(x.get(0))); betas[1] = Math.sqrt(Math.abs(x.get(3))); betas[2] = Math.sqrt(Math.abs(x.get(5))); betas[1] *= Math.signum(x.get(0))*Math.signum(x.get(1)); betas[2] *= Math.signum(x.get(0))*Math.signum(x.get(2)); betas[3] = 0; refine(betas); } /** * If the data is planar use relinearize to estimate betas */ protected void estimateCase3_planar( double[] betas ) { relinearizeBeta.setNumberControl(3); relinearizeBeta.process(L_full, y, betas); refine(betas); } protected void estimateCase4( double[] betas ) { relinearizeBeta.setNumberControl(4); relinearizeBeta.process(L_full, y, betas); refine(betas); } /** * Optimize beta values using Gauss Newton. * * @param betas Beta values being optimized. */ private void gaussNewton( double[] betas ) { A_temp.reshape(L_full.numRows, numControl); v_temp.reshape(L_full.numRows, 1); x.reshape(numControl, 1, false); // don't check numControl inside in hope that the JVM can optimize the code better if (numControl == 4) { for (int i = 0; i < numIterations; i++) { UtilLepetitEPnP.jacobian_Control4(L_full, betas, A_temp); UtilLepetitEPnP.residuals_Control4(L_full, y, betas, v_temp.data); if (!solver.setA(A_temp)) return; solver.solve(v_temp, x); for (int j = 0; j < numControl; j++) { betas[j] -= x.data[j]; } } } else { for (int i = 0; i < numIterations; i++) { UtilLepetitEPnP.jacobian_Control3(L_full, betas, A_temp); UtilLepetitEPnP.residuals_Control3(L_full, y, betas, v_temp.data); if (!solver.setA(A_temp)) return; solver.solve(v_temp, x); for (int j = 0; j < numControl; j++) { betas[j] -= x.data[j]; } } } } /** * Returns the minimum number of points required to make an estimate. Technically * it is 4 for general and 3 for planar. The minimum number of point cases * seem to be a bit unstable in some situations. minimum + 1 or more is stable. * * @return minimum number of points */ public int getMinPoints() { return 5; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy