All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.pose.PoseFromPairLinear6 Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.pose;

import boofcv.struct.geo.AssociatedPair;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import georegression.struct.point.Point4D_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.linsol.svd.SolveNullSpaceSvd_DDRM;
import org.ejml.interfaces.SolveNullSpace;

import java.util.List;

/**
 * 

* Estimates the camera motion using linear algebra given a set of N associated point observations and the * depth (z-coordinate) of each object, where N ≥ 6. Note this is similar to, but not exactly the PnP problem. *

* *

* Output from this class is a rotation and translation that converts a point from the first to second * camera's reference frame:

* {@code X' = R*X+T}
* where R is a rotation matrix, T is a translation matrix, X is a coordinate in 1st reference frame, and X' * in the second. * *

* This approach is a modified version of the approach discussed in [1]. It is derived by using * bilinear and trilinear constraints, as is discussed in Section 8.3. It has been modified to remove * redundant rows and so that the computed rotation matrix is row major. The solution is derived from * the equations below and by computing the null space from the resulting matrix:
* cross(x2)*(A*x1) + cross(x2)*T/λi=0
* where cross(x) is the cross product matrix of X, xi is the pixel coordinate (normalized or not) in the * ith image, A is rotation and T translation. *

* *

* [1] Page 279 in "An Invitation to 3-D Vision, From Images to Geometric Models" 1st Ed. 2004. Springer. *

* * @author Peter Abeles */ public class PoseFromPairLinear6 { // The rank 11 linear system private DMatrixRMaj A = new DMatrixRMaj(1, 12); private SolveNullSpace solveNullspace = new SolveNullSpaceSvd_DDRM(); // Found projective transform private DMatrixRMaj P = new DMatrixRMaj(3, 4); /** * Computes the transformation between two camera frames using a linear equation. Both the * observed feature locations in each camera image and the depth (z-coordinate) of each feature * must be known. Feature locations are in calibrated image coordinates. * * @param observations List of observations on the image plane in calibrated coordinates. * @param locations List of object locations. One for each observation pair. */ public boolean process( List observations, List locations ) { if (observations.size() != locations.size()) throw new IllegalArgumentException("Number of observations and locations must match."); if (observations.size() < 6) throw new IllegalArgumentException("At least (if not more than) six points are required."); setupA(observations, locations); if (!solveNullspace.process(A, 1, P)) return false; P.numRows = 3; P.numCols = 4; return true; } /** * Computes the transformation between two camera frames using a linear equation. Both the * observed feature locations in each camera image and the depth (z-coordinate) of each feature * must be known. Feature locations are in calibrated image coordinates. * * @param observations List of pixel or normalized image coordinate observations * @param locations List of object locations in homogenous coordinates. One for each observation pair. */ public boolean processHomogenous( List observations, List locations ) { if (observations.size() != locations.size()) throw new IllegalArgumentException("Number of observations and locations must match."); if (observations.size() < 6) throw new IllegalArgumentException("At least (if not more than) six points are required."); setupHomogenousA(observations, locations); if (!solveNullspace.process(A, 1, P)) return false; P.numRows = 3; P.numCols = 4; return true; } /** * P=[A|T] * * @return projective A */ public DMatrixRMaj getProjective() { return P; } /** * Matrix used internally. */ protected DMatrixRMaj getA() { return A; } private void setupA( List observations, List locations ) { A.reshape(2*observations.size(), 12, false); for (int i = 0; i < observations.size(); i++) { AssociatedPair p = observations.get(i); Point3D_F64 loc = locations.get(i); Point2D_F64 pt1 = p.p1; Point2D_F64 pt2 = p.p2; // normalize the points int w = i*2; double alpha = 1.0/loc.z; A.set(w, 4, -pt1.x); A.set(w, 5, -pt1.y); A.set(w, 6, -1); A.set(w, 8, pt2.y*pt1.x); A.set(w, 9, pt2.y*pt1.y); A.set(w, 10, pt2.y); A.set(w, 3, 0); A.set(w, 7, -alpha); A.set(w, 11, alpha*pt2.y); w++; A.set(w, 0, pt1.x); A.set(w, 1, pt1.y); A.set(w, 2, 1); A.set(w, 8, -pt2.x*pt1.x); A.set(w, 9, -pt2.x*pt1.y); A.set(w, 10, -pt2.x); A.set(w, 3, alpha); A.set(w, 7, 0); A.set(w, 11, -alpha*pt2.x); } } private void setupHomogenousA( List observations, List locations ) { A.reshape(2*observations.size(), 12, false); for (int i = 0; i < observations.size(); i++) { AssociatedPair p = observations.get(i); Point4D_F64 loc = locations.get(i); Point2D_F64 pt1 = p.p1; Point2D_F64 pt2 = p.p2; // normalize the points int w = i*2; double alpha = loc.w/loc.z; A.set(w, 4, -pt1.x); A.set(w, 5, -pt1.y); A.set(w, 6, -1); A.set(w, 8, pt2.y*pt1.x); A.set(w, 9, pt2.y*pt1.y); A.set(w, 10, pt2.y); A.set(w, 3, 0); A.set(w, 7, -alpha); A.set(w, 11, alpha*pt2.y); w++; A.set(w, 0, pt1.x); A.set(w, 1, pt1.y); A.set(w, 2, 1); A.set(w, 8, -pt2.x*pt1.x); A.set(w, 9, -pt2.x*pt1.y); A.set(w, 10, -pt2.x); A.set(w, 3, alpha); A.set(w, 7, 0); A.set(w, 11, -alpha*pt2.x); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy