All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.pose.Relinearlize Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.pose;

import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.dense.row.factory.LinearSolverFactory_DDRM;
import org.ejml.interfaces.decomposition.SingularValueDecomposition;
import org.ejml.interfaces.linsol.LinearSolverDense;

/**
 * 

* Used in case 4 of EPnP. See [1] for details. This technique appears to not be all that accurate * in practice, but better than nothing. Or maybe there is a bug in the implementation below * since even with perfect data it appears to generate large errors. One possible source * of implementation error is that the entire null space is not being used. More of * the null space (particularly in the planar case) could be used if more relinearization * was run multiple times. *

* *

* [1] Aviad Kipnis and Adi Shamir, "Cryptanalysis of HPE Public Key Cryptosystem" 1999 *

* * @author Peter Abeles */ @SuppressWarnings({"NullAway.Init"}) public class Relinearlize { // number of control points. 4 for general 3 for planar int numControl; // how much of the null space is sued int numNull; // contains the null space DMatrixRMaj V; // contains one possible solution DMatrixRMaj x0 = new DMatrixRMaj(1, 1); // lookup table for indices int table[] = new int[10*10]; SingularValueDecomposition svd = DecompositionFactory_DDRM.svd(3, 3, false, true, false); // used inside of solveConstraintMatrix DMatrixRMaj AA = new DMatrixRMaj(1, 1); DMatrixRMaj yy = new DMatrixRMaj(1, 1); DMatrixRMaj xx = new DMatrixRMaj(1, 1); // used to compute one possible solution LinearSolverDense pseudo = LinearSolverFactory_DDRM.pseudoInverse(true); // stores constraints double XiiXjk[] = new double[10]; double XikXji[] = new double[10]; /** * Specified the number of control points. * * @param numControl 3 = planar, 4 = general */ public void setNumberControl( int numControl ) { this.numControl = numControl; if (numControl == 4) { x0.reshape(10, 1, false); AA.reshape(10, 9, false); yy.reshape(10, 1, false); xx.reshape(9, 1, false); numNull = 3; } else { x0.reshape(6, 1, false); AA.reshape(4, 2, false); yy.reshape(4, 1, false); xx.reshape(2, 1, false); numNull = 1; } int index = 0; for (int i = 0; i < numControl; i++) { for (int j = i; j < numControl; j++) { table[i*numControl + j] = table[j*numControl + i] = index++; } } } /** * Estimates betas using relinearization. * * @param L_full Linear constraint matrix * @param y distances between world control points * @param betas Estimated betas. Output. */ public void process( DMatrixRMaj L_full, DMatrixRMaj y, double betas[] ) { svd.decompose(L_full); // extract null space V = svd.getV(null, true); // compute one possible solution pseudo.setA(L_full); pseudo.solve(y, x0); // add additional constraints to reduce the number of possible solutions DMatrixRMaj alphas = solveConstraintMatrix(); // compute the final solution for (int i = 0; i < x0.numRows; i++) { for (int j = 0; j < numNull; j++) { x0.data[i] += alphas.data[j]*valueNull(j, i); } } if (numControl == 4) { betas[0] = Math.sqrt(Math.abs(x0.data[0])); betas[1] = Math.sqrt(Math.abs(x0.data[4]))*Math.signum(x0.data[1]); betas[2] = Math.sqrt(Math.abs(x0.data[7]))*Math.signum(x0.data[2]); betas[3] = Math.sqrt(Math.abs(x0.data[9]))*Math.signum(x0.data[3]); } else { betas[0] = Math.sqrt(Math.abs(x0.data[0])); betas[1] = Math.sqrt(Math.abs(x0.data[3]))*Math.signum(x0.data[1]); betas[2] = Math.sqrt(Math.abs(x0.data[5]))*Math.signum(x0.data[2]); } } /** * Apply additional constraints to reduce the number of possible solutions * * x(k) = x_{ij} = bi*bj = x0(k) + a1*V0(k) + a2*V1(k) + a3*V2(k) * * constraint: * x_{ii}*x_{jk} = x_{ik}*x_{ji} */ protected DMatrixRMaj solveConstraintMatrix() { int rowAA = 0; for (int i = 0; i < numControl; i++) { for (int j = i + 1; j < numControl; j++) { for (int k = j; k < numControl; k++, rowAA++) { // x_{ii}*x_{jk} = x_{ik}*x_{ji} extractXaXb(getIndex(i, i), getIndex(j, k), XiiXjk); extractXaXb(getIndex(i, k), getIndex(j, i), XikXji); for (int l = 1; l <= AA.numCols; l++) { AA.set(rowAA, l - 1, XikXji[l] - XiiXjk[l]); } yy.set(rowAA, XiiXjk[0] - XikXji[0]); } } } // AA.print(); CommonOps_DDRM.solve(AA, yy, xx); return xx; } public double valueNull( int which, int index ) { return V.get(V.numCols - numControl + which, index); } private int getIndex( int i, int j ) { return table[i*numControl + j]; } private void extractXaXb( int indexA, int indexB, double quadratic[] ) { double x0a = x0.get(indexA); double v0a = valueNull(0, indexA); double x0b = x0.get(indexB); double v0b = valueNull(0, indexB); if (numControl == 4) { double v1a = valueNull(1, indexA); double v2a = valueNull(2, indexA); double v1b = valueNull(1, indexB); double v2b = valueNull(2, indexB); multiplyQuadratic4(x0a, v0a, v1a, v2a, x0b, v0b, v1b, v2b, quadratic); } else { multiplyQuadratic2(x0a, v0a, x0b, v0b, quadratic); } } private void multiplyQuadratic4( double x0, double x1, double x2, double x3, double y0, double y1, double y2, double y3, double quadratic[] ) { quadratic[0] = x0*y0; quadratic[1] = x0*y1 + y0*x1; quadratic[2] = x0*y2 + y0*x2; quadratic[3] = x0*y3 + y0*x3; quadratic[4] = x1*y1; quadratic[5] = x1*y2 + y1*x2; quadratic[6] = x1*y3 + y1*x3; quadratic[7] = x2*y2; quadratic[8] = x2*y3 + y2*x3; quadratic[9] = x3*y3; } private void multiplyQuadratic2( double x0, double x1, double y0, double y1, double quadratic[] ) { quadratic[0] = x0*y0; quadratic[1] = x0*y1 + y0*x1; quadratic[2] = x1*y1; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy