All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.pose.UtilLepetitEPnP Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.pose;

import georegression.struct.point.Point3D_F64;
import org.ddogleg.struct.DogArray;
import org.ejml.data.DMatrixRMaj;

import java.util.List;

/**
 * Various utility functions for {@link PnPLepetitEPnP}.
 *
 * @author Peter Abeles
 */
public class UtilLepetitEPnP {

	/**
	 * Computes the camera control points as weighted sum of null points.
	 *
	 * @param beta Beta values which describe the weights of null points
	 * @param nullPts Null points that the camera point is a weighted sum of
	 * @param cameraPts The output
	 */
	public static void computeCameraControl( double[] beta,
											 List[] nullPts,
											 DogArray cameraPts,
											 int numControl ) {
		cameraPts.reset();
		for (int i = 0; i < numControl; i++) {
			cameraPts.grow().setTo(0, 0, 0);
		}

		for (int i = 0; i < numControl; i++) {
			double b = beta[i];
//			System.out.printf("%7.3f ", b);

			for (int j = 0; j < numControl; j++) {
				Point3D_F64 s = cameraPts.get(j);
				Point3D_F64 p = nullPts[i].get(j);
				s.x += b*p.x;
				s.y += b*p.y;
				s.z += b*p.z;
			}
		}
	}

	/**
	 * Extracts the linear constraint matrix for case 1 from the full 6x10 constraint matrix.
	 */
	public static void constraintMatrix6x4( DMatrixRMaj L_6x10, DMatrixRMaj L_6x4 ) {

		int index = 0;
		for (int i = 0; i < 6; i++) {
			L_6x4.data[index++] = L_6x10.get(i, 0);
			L_6x4.data[index++] = L_6x10.get(i, 1);
			L_6x4.data[index++] = L_6x10.get(i, 3);
			L_6x4.data[index++] = L_6x10.get(i, 6);
		}
	}

	/**
	 * Extracts the linear constraint matrix for case 2 from the full 6x10 constraint matrix.
	 */
	public static void constraintMatrix6x3( DMatrixRMaj L_6x10, DMatrixRMaj L_6x3 ) {

		int index = 0;
		for (int i = 0; i < 6; i++) {
			L_6x3.data[index++] = L_6x10.get(i, 0);
			L_6x3.data[index++] = L_6x10.get(i, 1);
			L_6x3.data[index++] = L_6x10.get(i, 4);
		}
	}

	/**
	 * Extracts the linear constraint matrix for case 3 from the full 6x10 constraint matrix.
	 */
	public static void constraintMatrix6x6( DMatrixRMaj L_6x10, DMatrixRMaj L_6x6 ) {

		int index = 0;
		for (int i = 0; i < 6; i++) {
			L_6x6.data[index++] = L_6x10.get(i, 0);
			L_6x6.data[index++] = L_6x10.get(i, 1);
			L_6x6.data[index++] = L_6x10.get(i, 2);
			L_6x6.data[index++] = L_6x10.get(i, 4);
			L_6x6.data[index++] = L_6x10.get(i, 5);
			L_6x6.data[index++] = L_6x10.get(i, 7);
		}
	}

	/**
	 * Linear constraint matrix used in case 4 in the general case
	 *
	 * @param L Constraint matrix
	 * @param y Vector containing distance between world control points
	 * @param controlWorldPts List of world control points
	 * @param nullPts Null points
	 */
	public static void constraintMatrix6x10( DMatrixRMaj L, DMatrixRMaj y,
											 DogArray controlWorldPts,
											 List[] nullPts ) {
		int row = 0;
		for (int i = 0; i < 4; i++) {
			Point3D_F64 ci = controlWorldPts.get(i);
			Point3D_F64 vai = nullPts[0].get(i);
			Point3D_F64 vbi = nullPts[1].get(i);
			Point3D_F64 vci = nullPts[2].get(i);
			Point3D_F64 vdi = nullPts[3].get(i);

			for (int j = i + 1; j < 4; j++, row++) {
				Point3D_F64 cj = controlWorldPts.get(j);
				Point3D_F64 vaj = nullPts[0].get(j);
				Point3D_F64 vbj = nullPts[1].get(j);
				Point3D_F64 vcj = nullPts[2].get(j);
				Point3D_F64 vdj = nullPts[3].get(j);

				y.set(row, 0, ci.distance2(cj));

				double xa = vai.x - vaj.x;
				double ya = vai.y - vaj.y;
				double za = vai.z - vaj.z;

				double xb = vbi.x - vbj.x;
				double yb = vbi.y - vbj.y;
				double zb = vbi.z - vbj.z;

				double xc = vci.x - vcj.x;
				double yc = vci.y - vcj.y;
				double zc = vci.z - vcj.z;

				double xd = vdi.x - vdj.x;
				double yd = vdi.y - vdj.y;
				double zd = vdi.z - vdj.z;

				double da = xa*xa + ya*ya + za*za;
				double db = xb*xb + yb*yb + zb*zb;
				double dc = xc*xc + yc*yc + zc*zc;
				double dd = xd*xd + yd*yd + zd*zd;

				double dab = xa*xb + ya*yb + za*zb;
				double dac = xa*xc + ya*yc + za*zc;
				double dad = xa*xd + ya*yd + za*zd;
				double dbc = xb*xc + yb*yc + zb*zc;
				double dbd = xb*xd + yb*yd + zb*zd;
				double dcd = xc*xd + yc*yd + zc*zd;

				L.set(row, 0, da);
				L.set(row, 1, 2*dab);
				L.set(row, 2, 2*dac);
				L.set(row, 3, 2*dad);
				L.set(row, 4, db);
				L.set(row, 5, 2*dbc);
				L.set(row, 6, 2*dbd);
				L.set(row, 7, dc);
				L.set(row, 8, 2*dcd);
				L.set(row, 9, dd);
			}
		}
	}

	/**
	 * Extracts the linear constraint matrix for case 1 from the full 6x10 constraint matrix.
	 */
	public static void constraintMatrix3x3a( DMatrixRMaj L_3x6, DMatrixRMaj L_3x3 ) {

		int index = 0;
		for (int i = 0; i < 3; i++) {
			L_3x3.data[index++] = L_3x6.get(i, 0);
			L_3x3.data[index++] = L_3x6.get(i, 1);
			L_3x3.data[index++] = L_3x6.get(i, 2);
		}
	}

	/**
	 * Extracts the linear constraint matrix for planar case 2 from the full 4x6 constraint matrix.
	 */
	public static void constraintMatrix3x3( DMatrixRMaj L_3x6,
											DMatrixRMaj L_6x3 ) {

		int index = 0;
		for (int i = 0; i < 3; i++) {
			L_6x3.data[index++] = L_3x6.get(i, 0);
			L_6x3.data[index++] = L_3x6.get(i, 1);
			L_6x3.data[index++] = L_3x6.get(i, 3);
		}
	}

	/**
	 * Linear constraint matrix for case 4 in the planar case
	 *
	 * @param L Constraint matrix
	 * @param y Vector containing distance between world control points
	 * @param controlWorldPts List of world control points
	 * @param nullPts Null points
	 */
	public static void constraintMatrix3x6( DMatrixRMaj L, DMatrixRMaj y,
											DogArray controlWorldPts,
											List[] nullPts ) {
		int row = 0;
		for (int i = 0; i < 3; i++) {
			Point3D_F64 ci = controlWorldPts.get(i);
			Point3D_F64 vai = nullPts[0].get(i);
			Point3D_F64 vbi = nullPts[1].get(i);
			Point3D_F64 vci = nullPts[2].get(i);

			for (int j = i + 1; j < 3; j++, row++) {
				Point3D_F64 cj = controlWorldPts.get(j);
				Point3D_F64 vaj = nullPts[0].get(j);
				Point3D_F64 vbj = nullPts[1].get(j);
				Point3D_F64 vcj = nullPts[2].get(j);

				y.set(row, 0, ci.distance2(cj));

				double xa = vai.x - vaj.x;
				double ya = vai.y - vaj.y;
				double za = vai.z - vaj.z;

				double xb = vbi.x - vbj.x;
				double yb = vbi.y - vbj.y;
				double zb = vbi.z - vbj.z;

				double xc = vci.x - vcj.x;
				double yc = vci.y - vcj.y;
				double zc = vci.z - vcj.z;

				double da = xa*xa + ya*ya + za*za;
				double db = xb*xb + yb*yb + zb*zb;
				double dc = xc*xc + yc*yc + zc*zc;

				double dab = xa*xb + ya*yb + za*zb;
				double dac = xa*xc + ya*yc + za*zc;
				double dbc = xb*xc + yb*yc + zb*zc;

				L.set(row, 0, da);
				L.set(row, 1, 2*dab);
				L.set(row, 2, 2*dac);
				L.set(row, 3, db);
				L.set(row, 4, 2*dbc);
				L.set(row, 5, dc);
			}
		}
	}

	/**
	 * Computes the residuals (difference between observed and predicted) given 4 control points.
	 */
	public static void residuals_Control4( DMatrixRMaj L_full, DMatrixRMaj y,
										   double[] beta, double[] r ) {
		double b0 = beta[0];
		double b1 = beta[1];
		double b2 = beta[2];
		double b3 = beta[3];

		final double[] ld = L_full.data;

		for (int i = 0; i < 6; i++) {
			int li = L_full.numCols*i;
			double residual = -y.data[i];
			residual += ld[li++]*b0*b0;
			residual += ld[li++]*b0*b1;
			residual += ld[li++]*b0*b2;
			residual += ld[li++]*b0*b3;
			residual += ld[li++]*b1*b1;
			residual += ld[li++]*b1*b2;
			residual += ld[li++]*b1*b3;
			residual += ld[li++]*b2*b2;
			residual += ld[li++]*b2*b3;
			residual += ld[li]*b3*b3;

			r[i] = residual;
		}
	}

	/**
	 * Computes the residuals (difference between observed and predicted given 3 control points.
	 */
	public static void residuals_Control3( DMatrixRMaj L_full, DMatrixRMaj y,
										   double[] beta, double[] r ) {
		// @formatter:off
		double b0 = beta[0], b1 = beta[1], b2 = beta[2];

		final double[] ld = L_full.data;

		for (int i = 0; i < 3; i++) {
			double residual = -y.data[i];
			int li = L_full.numCols*i;
			residual += ld[li++]*b0*b0;
			residual += ld[li++]*b0*b1;
			residual += ld[li++]*b0*b2;
			residual += ld[li++]*b1*b1;
			residual += ld[li++]*b1*b2;
			residual += ld[li  ]*b2*b2;

			r[i] = residual;
		}
		// @formatter:on
	}

	/**
	 * Computes the Jacobian given 4 control points.
	 */
	public static void jacobian_Control4( DMatrixRMaj L_full, double[] beta, DMatrixRMaj A ) {
		// @formatter:off
		int indexA = 0;

		double b0 = beta[0], b1 = beta[1], b2 = beta[2], b3 = beta[3];

		final double[] ld = L_full.data;

		for (int i = 0; i < 6; i++) {
			int li = L_full.numCols*i;
			A.data[indexA++] = 2*ld[li+0]*b0 +   ld[li+1]*b1 +   ld[li+2]*b2 +   ld[li+3]*b3;
			A.data[indexA++] =   ld[li+1]*b0 + 2*ld[li+4]*b1 +   ld[li+5]*b2 +   ld[li+6]*b3;
			A.data[indexA++] =   ld[li+2]*b0 +   ld[li+5]*b1 + 2*ld[li+7]*b2 +   ld[li+8]*b3;
			A.data[indexA++] =   ld[li+3]*b0 +   ld[li+6]*b1 +   ld[li+8]*b2 + 2*ld[li+9]*b3;
		}
		// @formatter:on
	}

	/**
	 * Computes the Jacobian given 3 control points.
	 */
	public static void jacobian_Control3( DMatrixRMaj L_full, double[] beta, DMatrixRMaj A ) {
		// @formatter:off
		int indexA = 0;

		double b0 = beta[0], b1 = beta[1], b2 = beta[2];

		final double[] ld = L_full.data;

		for (int i = 0; i < 3; i++) {
			int li = L_full.numCols*i;
			A.data[indexA++] = 2*ld[li+0]*b0 +   ld[li+1]*b1 +   ld[li+2]*b2;
			A.data[indexA++] =   ld[li+1]*b0 + 2*ld[li+3]*b1 +   ld[li+4]*b2;
			A.data[indexA++] =   ld[li+2]*b0 +   ld[li+4]*b1 + 2*ld[li+5]*b2;
		}
		// @formatter:on
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy