All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.rectify.RectifyCalibrated Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.rectify;

import georegression.geometry.GeometryMath_F64;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.se.Se3_F64;
import lombok.Getter;
import org.ejml.data.DMatrixRMaj;
import org.ejml.simple.SimpleMatrix;

/**
 * 

* Rectifies a stereo pair with known camera calibration using a simple algorithm described in [1] * such that the epipoles project to infinity along the x-axis. After rectification both images will * have the same intrinsic calibration matrix, same extrinsic rotation matrix, but the optical centers * are not modified. *

* *

* The calibration matrix is the standard upper triangular matrix used throughout the library. A single * calibration matrix is computed for both images by averaging the two original and setting the skew * to zero. *

* *

* The rectified view is chosen such that it will be most similar to the first camera. This is done by making * the original z-axis and the rectified z-axis similar. *

* *

* [1] A. Fusiello, E. Trucco, and A. Verri, "A Compact Algorithm for Rectification of Stereo Pairs" * Machine Vision and Applications, 2000 *

* * @author Peter Abeles */ @SuppressWarnings({"NullAway.Init"}) public class RectifyCalibrated { /** Rectification transform for view-1 camera. Undistored to rectified pixels. */ final @Getter DMatrixRMaj undistToRectPixels1 = new DMatrixRMaj(3, 3); /** Rectification transform for view-2 camera. Undistored to rectified pixels. */ final @Getter DMatrixRMaj undistToRectPixels2 = new DMatrixRMaj(3, 3); // direction of new coordinate system axises final Vector3D_F64 v1 = new Vector3D_F64(); final Vector3D_F64 v2 = new Vector3D_F64(); final Vector3D_F64 v3 = new Vector3D_F64(); // Camera calibration matrix. final SimpleMatrix K = new SimpleMatrix(3, 3); /** * Rotation matrix of rectified coordinate system. To convert back into left camera reference frame multiply * the triangulated point by the transpose of this matrix */ @Getter DMatrixRMaj rectifiedRotation; /** * Computes rectification transforms for both cameras and optionally a single calibration * matrix. * * @param K1 Calibration matrix for first camera. * @param worldToCamera1 Location of the first camera. * @param K2 Calibration matrix for second camera. * @param worldToCamera2 Location of the second camera. */ public void process( DMatrixRMaj K1, Se3_F64 worldToCamera1, DMatrixRMaj K2, Se3_F64 worldToCamera2 ) { SimpleMatrix sK1 = SimpleMatrix.wrap(K1); SimpleMatrix sK2 = SimpleMatrix.wrap(K2); SimpleMatrix R1 = SimpleMatrix.wrap(worldToCamera1.getR()); SimpleMatrix R2 = SimpleMatrix.wrap(worldToCamera2.getR()); SimpleMatrix T1 = new SimpleMatrix(3, 1, true, new double[]{worldToCamera1.getT().x, worldToCamera1.getT().y, worldToCamera1.getT().z}); SimpleMatrix T2 = new SimpleMatrix(3, 1, true, new double[]{worldToCamera2.getT().x, worldToCamera2.getT().y, worldToCamera2.getT().z}); // P = K*[R|T] SimpleMatrix KR1 = sK1.mult(R1); SimpleMatrix KR2 = sK2.mult(R2); // compute optical centers in world reference frame // c = -R'*T SimpleMatrix c1 = R1.transpose().mult(T1.scale(-1)); SimpleMatrix c2 = R2.transpose().mult(T2.scale(-1)); // new coordinate system axises selectAxises(R1, R2, c1, c2); // new extrinsic parameters, rotation matrix with rows of camera 1's coordinate system in // the world frame SimpleMatrix RR = new SimpleMatrix(3, 3, true, new double[]{ v1.x, v1.y, v1.z, v2.x, v2.y, v2.z, v3.x, v3.y, v3.z}); // new calibration matrix that is an average of the original K.setTo(sK1.plus(sK2).scale(0.5)); K.set(0, 1, 0);// set skew to zero // new projection rotation matrices SimpleMatrix KRR = K.mult(RR); // rectification transforms undistToRectPixels1.setTo(KRR.mult(KR1.invert()).getDDRM()); undistToRectPixels2.setTo(KRR.mult(KR2.invert()).getDDRM()); rectifiedRotation = RR.getDDRM(); } /** * Selects axises of new coordinate system */ private void selectAxises( SimpleMatrix R1, SimpleMatrix R2, SimpleMatrix c1, SimpleMatrix c2 ) { // --------- Compute the new x-axis v1.setTo(c2.get(0) - c1.get(0), c2.get(1) - c1.get(1), c2.get(2) - c1.get(2)); v1.normalize(); // --------- Compute the new y-axis // cross product of old z axis and new x axis // According to the paper [1] this choice is arbitrary, however it is not. By selecting // the original axis the similarity with the first view is maximized. The other extreme // would be to make it perpendicular, resulting in an unusable rectification. // extract old z-axis from rotation matrix Vector3D_F64 oldZ = new Vector3D_F64( R1.get(2, 0) + R2.get(2, 0), R1.get(2, 1) + R2.get(2, 1), R1.get(2, 2) + R2.get(2, 2)); GeometryMath_F64.cross(oldZ, v1, v2); v2.normalize(); // ---------- Compute the new z-axis // simply the process product of the first two GeometryMath_F64.cross(v1, v2, v3); v3.normalize(); } /** * If a single calibration matrix was requested then this returns it. * * @return Calibration matrix for both cameras */ public DMatrixRMaj getCalibrationMatrix() { return K.getDDRM(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy