All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.robust.DistanceHomographySq Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.robust;

import boofcv.struct.geo.AssociatedPair;
import georegression.struct.homography.Homography2D_F64;
import georegression.struct.homography.UtilHomography_F64;
import georegression.struct.point.Point2D_F64;
import georegression.transform.homography.HomographyPointOps_F64;
import org.ddogleg.fitting.modelset.DistanceFromModel;
import org.ejml.data.DMatrixRMaj;

import java.util.List;

/**
 * 

* Computes the Euclidean error squared between 'p1' and 'p2' after projecting 'p1' into image 2. Input * can be in pixels or normalized image coordinates, but the error for normalized image coordinates doesn't * have a physical meaning. *

* *

* error = (p2'.x - p2.x)2 + (p2'.y - p2.y)2, where p2' is the predicted location and p2 is * the observed location. *

* * @author Peter Abeles */ @SuppressWarnings({"NullAway.Init"}) public class DistanceHomographySq implements DistanceFromModel { Homography2D_F64 model; Point2D_F64 expected = new Point2D_F64(); public void setModel( DMatrixRMaj H ) { if (model == null) model = new Homography2D_F64(); UtilHomography_F64.convert(H, model); } @Override public void setModel( Homography2D_F64 model ) { this.model = model; } @Override public double distance( AssociatedPair pt ) { HomographyPointOps_F64.transform(model, pt.p1, expected); return expected.distance2(pt.p2); } @Override public void distances( List points, double[] distance ) { for (int i = 0; i < points.size(); i++) { AssociatedPair p = points.get(i); HomographyPointOps_F64.transform(model, p.p1, expected); distance[i] = expected.distance2(p.p2); } } @Override public Class getPointType() { return AssociatedPair.class; } @Override public Class getModelType() { return Homography2D_F64.class; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy