All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.selfcalib.EstimatePlaneAtInfinityGivenK Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.selfcalib;

import boofcv.alg.geo.PerspectiveOps;
import georegression.struct.point.Vector3D_F64;
import org.ejml.UtilEjml;
import org.ejml.data.DMatrix3;
import org.ejml.data.DMatrix3x3;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.fixed.CommonOps_DDF3;

/**
 * If the camera calibration is known for two views then given canonical camera projection matrices (P1 = [I|0])
 * it is possible to compute the plane a infinity and from that elevate the views from projective to metric.
 * The solution returned is only approximate.
 *
 * 

*

  • Gherardi, Riccardo, and Andrea Fusiello. "Practical autocalibration." * European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2010.
  • *

    * * @author Peter Abeles */ public class EstimatePlaneAtInfinityGivenK { // Second view's projective camera matrix DMatrix3x3 Q2 = new DMatrix3x3(); DMatrix3 q2 = new DMatrix3(); // Known calibration for view 1 and view 2 DMatrix3x3 K1 = new DMatrix3x3(); DMatrix3x3 K2 = new DMatrix3x3(); DMatrix3x3 K2_inv = new DMatrix3x3(); // Workspace variables. Follows notation in paper when possible DMatrix3 t2 = new DMatrix3(); // Rotation matrix that makes t2 all in x-axis DMatrix3x3 RR = new DMatrix3x3(); DMatrix3x3 tmpA = new DMatrix3x3(); DMatrix3x3 tmpB = new DMatrix3x3(); DMatrix3x3 W = new DMatrix3x3(); Vector3D_F64 w2 = new Vector3D_F64(); Vector3D_F64 w3 = new Vector3D_F64(); /** * Specifies known intrinsic parameters for view 1 */ public void setCamera1( double fx, double fy, double skew, double cx, double cy ) { PerspectiveOps.pinholeToMatrix(fx, fy, skew, cx, cy, K1); } /** * Specifies known intrinsic parameters for view 2 */ public void setCamera2( double fx, double fy, double skew, double cx, double cy ) { PerspectiveOps.pinholeToMatrix(fx, fy, skew, cx, cy, K2); PerspectiveOps.invertPinhole(K2, K2_inv); } /** * Computes the plane at infinity * * @param P2 (Input) projective camera matrix for view 2. Not modified. * @param v (Output) plane at infinity * @return true if successful or false if it failed */ public boolean estimatePlaneAtInfinity( DMatrixRMaj P2, Vector3D_F64 v ) { PerspectiveOps.projectionSplit(P2, Q2, q2); // inv(K2)*(Q2*K1 + q2*v') CommonOps_DDF3.mult(K2_inv, q2, t2); CommonOps_DDF3.mult(K2_inv, Q2, tmpA); CommonOps_DDF3.mult(tmpA, K1, tmpB); // Find the rotation matrix R*t2 = [||t2||,0,0]^T computeRotation(t2, RR); // Compute W CommonOps_DDF3.mult(RR, tmpB, W); // Compute v, the plane at infinity // v = (w2 cross w3 / ||w3|| - w1 ) / ||t2|| w2.setTo(W.a21, W.a22, W.a23); w3.setTo(W.a31, W.a32, W.a33); double n3 = w3.norm(); v.crossSetTo(w2, w3); // approximation here, w2 and w3 might not be orthogonal v.divideIP(n3); v.x -= W.a11; v.y -= W.a12; v.z -= W.a13; v.divideIP(t2.a1); // really just a sanity check for bad input return !(UtilEjml.isUncountable(v.x) || UtilEjml.isUncountable(v.y) || UtilEjml.isUncountable(v.z)); } /** * Computes rotators which rotate t into [|t|,0,0] * * @param t Input the vector, Output vector after rotator has been applied */ static void computeRotation( DMatrix3 t, DMatrix3x3 R ) { for (int i = 1; i >= 0; i--) { double a = t.get(i, 0); double b = t.get(i + 1, 0); // compute the rotator such that [a,b] = [||X||,0] double r = Math.sqrt(a*a + b*b); double q11 = a/r; double q21 = b/r; // apply rotator to t and R t.set(i, 0, r); t.set(i + 1, 0, 0); // @formatter:off if( i == 1 ) { R.a11 = 1; R.a12 = 0; R.a13 = 0; R.a21 = 0; R.a22 = q11; R.a23 = q21; R.a31 = 0; R.a32 = -q21; R.a33 = q11; } else { R.a11 = q11; R.a12 = R.a22*q21; R.a13 = R.a23*q21; R.a21 = -q21; R.a22 = R.a22*q11; R.a23 = R.a23*q11; } // @formatter:on } } }




    © 2015 - 2025 Weber Informatics LLC | Privacy Policy