All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.selfcalib.RefineDualQuadraticAlgebraicError Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2022, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.selfcalib;

import boofcv.misc.BoofMiscOps;
import boofcv.misc.ConfigConverge;
import georegression.struct.point.Point3D_F64;
import lombok.Getter;
import lombok.Setter;
import org.ddogleg.optimization.FactoryOptimization;
import org.ddogleg.optimization.UnconstrainedLeastSquares;
import org.ddogleg.optimization.derivative.NumericalJacobianForward_DDRM;
import org.ddogleg.optimization.functions.FunctionNtoM;
import org.ddogleg.struct.DogArray;
import org.ddogleg.struct.DogArray_F64;
import org.ddogleg.struct.DogArray_I32;
import org.ddogleg.struct.VerbosePrint;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.NormOps_DDRM;
import org.jetbrains.annotations.Nullable;

import java.io.PrintStream;
import java.util.Set;

/**
 * 

* Non-linear refinement of Dual Quadratic using algebraic error. Different assumptions about the intrinsics * parameters can be made, and the number of cameras can be less than the number of views. * This should be called after a linear estimate has been generated and should be followed up by bundle adjustment. * The optimization function is parameterized using intrinsic parameters of each camera directly along with * the plane at infinity. *

* *

Optional Assumptions: known aspect ratio, known principle point, single camera.

* *

* w*i = Ki *KTi
* w*i = PiQ*PTi *

* where Ki is the 3x3 camera calibration matrix for view i. Q is a 4x4 symmetric matrix and is the * absolute dual quadratic. Pi is a projective transform from view i+1 to i. * *

* A[i] = PiQ*PTi
* residual[i] = w*i/||w*i|| - A[i]/||A[i]|| *

* Residuals are computed for each projective. The F-norm of the residuals are what is minimized. * w and A are normalized to ensure that they have the same scale. * * NOTE: It would be possible to add zero-skew but this is much more simplistic without it and you rarely need * to relax the assumptions. * *
    *
  1. R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
  2. *
* * @author Peter Abeles * @see SelfCalibrationLinearDualQuadratic */ public class RefineDualQuadraticAlgebraicError implements VerbosePrint { /** Optimization algorithm */ public @Getter @Setter UnconstrainedLeastSquares minimizer = FactoryOptimization.levenbergMarquardt(null, false); /** If true then the images are assumed to have a known aspect ratio */ public @Getter @Setter boolean knownAspect = false; /** If true then the image center is assumed to be known */ public @Getter @Setter boolean knownPrinciplePoint = false; /** Convergence criteria */ public @Getter final ConfigConverge converge = new ConfigConverge(1e-12, 1e-8, 20); /** Resulting plane at infinity that was found */ public @Getter final Point3D_F64 planeAtInfinity = new Point3D_F64(); /** Found/updated camera parameters */ public @Getter final DogArray cameras = new DogArray<>(CameraState::new, CameraState::reset); // cameras is also internal work space when optimizing // Cameras that contain the initial state/known state DogArray priorCameras = new DogArray<>(CameraState::new, CameraState::reset); // Initial estimate of plane at infinity Point3D_F64 priorPlaneAtInfinity = new Point3D_F64(); // Mapping from view to camera DogArray_I32 viewToCamera = new DogArray_I32(); DogArray projectiveCameras = new DogArray<>(() -> new DMatrixRMaj(3, 4), DMatrixRMaj::zero); // Optimization error function ResidualFunction function = new ResidualFunction(); // Storage for initial parameters DogArray_F64 parameters = new DogArray_F64(); // storage for image of the absolute conic DMatrixRMaj w = new DMatrixRMaj(3, 3); // storage for the plane at infinity DMatrixRMaj p = new DMatrixRMaj(3, 1); // storage for p'*w DMatrixRMaj pw = new DMatrixRMaj(3, 1); @Nullable PrintStream verbose; /** * Must call this function before all others. Specifies the number of cameras and views. Preallocates memory. * * @param numCameras Number of cameras. * @param numViews Number of views. */ public void initialize( int numCameras, int numViews ) { BoofMiscOps.checkTrue(numCameras >= 1 && numCameras <= numViews); BoofMiscOps.checkTrue(numViews >= 2); priorCameras.reset().resize(numCameras); cameras.reset().resize(numCameras); projectiveCameras.reset().resize(numViews); // fill with -1 so that it will fail hard if not initialized viewToCamera.reset().resize(numViews, -1); } /** * Specifies the initial parameters or known parameters for a camera * * @param cameraIndex index of the camera * @param fx focal length x-axis * @param cx image center. x-axis * @param cy image center. y-axis * @param aspectRatio aspect ratio */ public void setCamera( int cameraIndex, double fx, double cx, double cy, double aspectRatio ) { priorCameras.get(cameraIndex).setTo(fx, aspectRatio, cx, cy); } /** * Specifies which view was generated by which camera */ public void setViewToCamera( int viewIndex, int cameraIndex ) { viewToCamera.set(viewIndex, cameraIndex); } /** * The observed camera matrix * * @param P Camera matrix. 3x4 */ public void setProjective( int cameraIndex, DMatrixRMaj P ) { BoofMiscOps.checkEq(3, P.numRows); BoofMiscOps.checkEq(4, P.numCols); projectiveCameras.get(cameraIndex).setTo(P); } /** * Specifies the initial state for the plane at infinity */ public void setPlaneAtInfinity( double x, double y, double z ) { this.priorPlaneAtInfinity.setTo(x, y, z); } /** * Refines the initial parameters to minimize algebraic error. * * @return true if there are no catastrophic errors */ public boolean refine() { BoofMiscOps.checkTrue(viewToCamera.get(0) != -1, "You must specify view to camera"); // Copy the cameras with prior information into the work cameras for (int cameraIdx = 0; cameraIdx < priorCameras.size; cameraIdx++) { cameras.get(cameraIdx).setTo(priorCameras.get(cameraIdx)); } parameters.resize(function.getNumOfInputsN()); encodeParameters(priorPlaneAtInfinity, priorCameras, parameters.data); // Configure the minimization minimizer.setFunction(function, new NumericalJacobianForward_DDRM(new ResidualFunction())); minimizer.initialize(parameters.data, converge.ftol, converge.gtol); double errorBefore = minimizer.getFunctionValue(); // Iterate until a final condition has been met int iterations; for (iterations = 0; iterations < converge.maxIterations; iterations++) { if (minimizer.iterate()) break; } if (verbose != null) verbose.printf("before=%.2e after=%.2e iterations=%d converged=%s\n", errorBefore, minimizer.getFunctionValue(), iterations, minimizer.isConverged()); // Extract the output decodeParameters(minimizer.getParameters(), cameras, planeAtInfinity); // Crude sanity check. Things went poorly if there is a non-positive focal length for (int i = 0; i < cameras.size; i++) { CameraState c = cameras.get(i); if (c.fx <= 0 || c.aspectRatio <= 0) return false; } return true; } protected void encodeParameters( Point3D_F64 planeAtInfinity, DogArray cameras, double[] parameters ) { parameters[0] = planeAtInfinity.x; parameters[1] = planeAtInfinity.y; parameters[2] = planeAtInfinity.z; int paramIndex = 3; for (int cameraIdx = 0; cameraIdx < cameras.size; cameraIdx++) { CameraState work = cameras.get(cameraIdx); parameters[paramIndex++] = work.fx; if (!knownAspect) parameters[paramIndex++] = work.aspectRatio; if (!knownPrinciplePoint) { parameters[paramIndex++] = work.cx; parameters[paramIndex++] = work.cy; } } } protected void decodeParameters( double[] parameters, DogArray cameras, Point3D_F64 planeAtInfinity ) { // Decode the cameras. plane at infinity is in the first 3 elements planeAtInfinity.setTo(parameters[0], parameters[1], parameters[2]); int paramIndex = 3; for (int cameraIdx = 0; cameraIdx < cameras.size; cameraIdx++) { CameraState work = cameras.get(cameraIdx); work.fx = parameters[paramIndex++]; if (!knownAspect) work.aspectRatio = parameters[paramIndex++]; if (!knownPrinciplePoint) { work.cx = parameters[paramIndex++]; work.cy = parameters[paramIndex++]; } } } /** * Computes K*K */ protected void encodeKK( CameraState camera, DMatrixRMaj kk ) { final double fx = camera.fx; final double fy = camera.aspectRatio*fx; final double cx = camera.cx; final double cy = camera.cy; // assign by index. Matrix is in row major order. 3x3 kk.data[0] = fx*fx + cx*cx; // (0,0) kk.data[1] = cx*cy; kk.data[2] = cx; kk.data[3] = kk.data[1]; // (1,0) kk.data[4] = fy*fy + cy*cy; kk.data[5] = cy; kk.data[6] = kk.data[2]; // (2,0) kk.data[7] = kk.data[5]; kk.data[8] = 1; } /** * Encodes the ADQ */ protected void encodeQ( CameraState camera, double infx, double infy, double infz, DMatrixRMaj Q ) { // plane at infinity p.data[0] = infx; p.data[1] = infy; p.data[2] = infz; encodeKK(camera, w); CommonOps_DDRM.insert(w, Q, 0, 0); CommonOps_DDRM.multTransA(p, w, pw); double dot = CommonOps_DDRM.dot(pw, p); for (int i = 0; i < 3; i++) { Q.unsafe_set(i, 3, -pw.get(i)); Q.unsafe_set(3, i, -pw.get(i)); } Q.unsafe_set(3, 3, dot); } @Override public void setVerbose( @Nullable PrintStream out, @Nullable Set configuration ) { this.verbose = BoofMiscOps.addPrefix(this, out); } /** * Error function for sum_i ||K[i]*K'[i] - P[i]*Q*P[i]||. Implementation takes advantage of structure * forced by parameterizing using intrinsic parameters and plane at infinity directory. */ private class ResidualFunction implements FunctionNtoM { // Storage for absolute dual quadratic DMatrixRMaj Q = new DMatrixRMaj(4, 4); // Storage for K*K where K is the intrinsic calibration matrix DMatrixRMaj KK = new DMatrixRMaj(3, 3); // Storage for intermediate results DMatrixRMaj PQ = new DMatrixRMaj(3, 4); DMatrixRMaj PQP = new DMatrixRMaj(3, 3); @Override public void process( double[] input, double[] output ) { decodeParameters(input, cameras, planeAtInfinity); // Compute the Q matrix, encodeQ(cameras.get(viewToCamera.get(0)), planeAtInfinity.x, planeAtInfinity.y, planeAtInfinity.z, Q); int indexOutput = 0; for (int projectiveIdx = 0; projectiveIdx < projectiveCameras.size; projectiveIdx++) { int cameraIndex = viewToCamera.get(projectiveIdx); encodeKK(cameras.get(cameraIndex), KK); DMatrixRMaj P = projectiveCameras.get(projectiveIdx); CommonOps_DDRM.mult(P, Q, PQ); CommonOps_DDRM.multTransB(PQ, P, PQP); // Resolve scale ambiguity by normalizing the matrices CommonOps_DDRM.divide(PQP, NormOps_DDRM.normPInf(PQP)); CommonOps_DDRM.divide(KK, NormOps_DDRM.normPInf(KK)); // Compute residuals. off diagonal elements are multiply by two since the matrix is symmetric output[indexOutput++] = KK.data[0] - PQP.data[0]; // (0,0) output[indexOutput++] = 2.0*(KK.data[1] - PQP.data[1]); // (0,1) output[indexOutput++] = 2.0*(KK.data[2] - PQP.data[2]); // (0,2) output[indexOutput++] = KK.data[4] - PQP.data[4]; // (1,1) output[indexOutput++] = 2.0*(KK.data[5] - PQP.data[5]); // (1,2) output[indexOutput++] = KK.data[8] - PQP.data[8]; // (2,2) } } @Override public int getNumOfInputsN() { int paramsPerCamera = 1; if (!knownAspect) paramsPerCamera += 1; if (!knownPrinciplePoint) paramsPerCamera += 2; // plane at infinity has 3-dof return 3 + paramsPerCamera*priorCameras.size; } @Override public int getNumOfOutputsM() { return 6*projectiveCameras.size; } } public static class CameraState { /** Focal length along x-axis in pixels */ public double fx; /** Image aspect ratio. Initial estimate or assumed value */ public double aspectRatio; /** Image principle point (pixels). Either initial estimate or assumed value */ public double cx, cy; public void reset() { fx = 0.0; aspectRatio = 1.0; cx = cy = 0.0; } public void setTo( double fx, double aspectRatio, double cx, double cy ) { this.fx = fx; this.aspectRatio = aspectRatio; this.cx = cx; this.cy = cy; } public void setTo( CameraState src ) { this.fx = src.fx; this.aspectRatio = src.aspectRatio; this.cx = src.cx; this.cy = src.cy; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy