All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.selfcalib.SelfCalibrationLinearRotationMulti Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.selfcalib;

import boofcv.alg.geo.GeometricResult;
import boofcv.struct.calib.CameraPinhole;
import georegression.struct.Matrix3x3_F64;
import georegression.struct.homography.Homography2D_F64;
import org.ddogleg.struct.DogArray;
import org.ddogleg.struct.DogArray_I32;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.fixed.CommonOps_DDF3;
import org.ejml.dense.row.SingularOps_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F64;

import java.util.List;

/**
 * Camera calibration for when the camera's motion is purely rotational and has no translational
 * component and camera parameters can change every frame. Linear constraints need to be specified
 * on camera parameters. Based off of variable calibration Algorithm 19.3 on page 482 in [1].
 *
 * 
 * Steps:
 * 1) Compute homographies between view i and reference frame, i.e. xi = Hix, ensure det(H)=1
 * 2) Uses equation wi=(Hi)-Tw(i)-1 to express linear constraints
 * 3) Compute K using Cholesky decomposition w = U*UT. Actually implemented as an algebraic formula.
 * 
* *

* There will be a sign ambiguity in the returned result for the translation vector. That can be resolved by checking * for positive depth of triangulated features. *

* *
    *
  1. R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
  2. *
* * @author Peter Abeles */ public class SelfCalibrationLinearRotationMulti { private SingularValueDecomposition_F64 svd = DecompositionFactory_DDRM.svd(10, 6, false, true, true); // specifies linear constraints boolean zeroSkew; boolean principlePointOrigin; boolean knownAspectRatio; // fy/fx double aspectRatio; //----------- Working space variables // linear constraint matrix A*x = 0 DMatrixRMaj A = new DMatrixRMaj(1, 1); // W for reference frame Homography2D_F64 W0 = new Homography2D_F64(); // W for all others Homography2D_F64 Wi = new Homography2D_F64(); // storage for calibration matrix Matrix3x3_F64 K = new Matrix3x3_F64(); Matrix3x3_F64 tmp = new Matrix3x3_F64(); DogArray_I32 notZeros = new DogArray_I32(); // storage for null vector DMatrixRMaj nv = new DMatrixRMaj(1, 1); DogArray listHInv = new DogArray<>(Homography2D_F64::new); DogArray calibration = new DogArray<>(CameraPinhole::new); /** * Specifies linear constraints * * Known aspect ratio constraint can only be used if zero skew is also assumped. * * @param zeroSkew Assume that skew is zero * @param principlePointOrigin Principle point is at the origin * @param knownAspect that the aspect ratio is known * @param aspect If aspect is known then this is the aspect. ratio=fy/fx Ignored otherwise. */ public void setConstraints( boolean zeroSkew, boolean principlePointOrigin, boolean knownAspect, double aspect ) { if (knownAspect && !zeroSkew) throw new IllegalArgumentException("If aspect is known then skew must be zero"); this.zeroSkew = zeroSkew; this.principlePointOrigin = principlePointOrigin; this.knownAspectRatio = knownAspect; this.aspectRatio = aspect; notZeros.resize(6); for (int i = 0; i < 6; i++) { notZeros.data[i] = i; } if (principlePointOrigin) { notZeros.remove(4); notZeros.remove(2); } if (zeroSkew) { notZeros.remove(1); } } /** * Assumes that the camera parameter are constant * * @param viewsI_to_view0 (Input) List of observed homographies * @return true if successful */ public GeometricResult estimate( List viewsI_to_view0 ) { calibration.reset(); int N = viewsI_to_view0.size(); if (!computeInverseH(viewsI_to_view0)) return GeometricResult.SOLVE_FAILED; fillInConstraintMatrix(); // Compute the SVD for its null space if (!svd.decompose(A)) { return GeometricResult.SOLVE_FAILED; } SingularOps_DDRM.nullVector(svd, true, nv); extractReferenceW(nv); convertW(W0, calibration.grow()); for (int i = 0; i < N; i++) { extractCalibration(listHInv.get(i), calibration.grow()); } return GeometricResult.SUCCESS; } /** * Number of constraints which are applied by each view */ public int numberOfConstraints() { int total = 0; if (zeroSkew) total++; if (principlePointOrigin) total += 2; if (knownAspectRatio) total += 1; return total; } /** * Fill in A using all the constraints * * Sage Math used for derivation *
	 *  H = matrix(SR, 3, 3, var('H11,H12,H13,H21,H22,H23,H31,H32,H33'))
	 *  var('W11,W12,W13,W22,W23,W33')
	 *  W = matrix(SR, 3, 3, [W11,W12,W13,W12,W22,W23,W13,W23,W33])
	 *  a=H.transpose()*W*H
	 *  a[0,1].expand()
	 * 
*/ void fillInConstraintMatrix() { int N = listHInv.size(); A.reshape(N*numberOfConstraints(), 6); if (A.numRows < notZeros.size) { throw new IllegalArgumentException("More unknowns than equations"); } double b = knownAspectRatio ? aspectRatio*aspectRatio : 1; for (int i = 0, idx = 0; i < N; i++) { Homography2D_F64 H = listHInv.get(i); if (zeroSkew) { // w12 A.data[idx++] = H.a11*H.a12; A.data[idx++] = H.a12*H.a21 + H.a11*H.a22; A.data[idx++] = H.a12*H.a31 + H.a11*H.a32; A.data[idx++] = H.a21*H.a22; A.data[idx++] = H.a22*H.a31 + H.a21*H.a32; A.data[idx++] = H.a31*H.a32; } if (principlePointOrigin) { // w13 = 0, w23 = 0 A.data[idx++] = H.a11*H.a13; A.data[idx++] = H.a13*H.a21 + H.a11*H.a23; A.data[idx++] = H.a13*H.a31 + H.a11*H.a33; A.data[idx++] = H.a21*H.a23; A.data[idx++] = H.a23*H.a31 + H.a21*H.a33; A.data[idx++] = H.a31*H.a33; A.data[idx++] = H.a12*H.a13; A.data[idx++] = H.a13*H.a22 + H.a12*H.a23; A.data[idx++] = H.a13*H.a32 + H.a12*H.a33; A.data[idx++] = H.a22*H.a23; A.data[idx++] = H.a23*H.a32 + H.a22*H.a33; A.data[idx++] = H.a32*H.a33; } if (knownAspectRatio) { // w11 - b*w22 = 0 A.data[idx++] = H.a11*H.a11 - H.a12*H.a12*b; A.data[idx++] = 2*H.a11*H.a21 - 2*H.a12*H.a22*b; A.data[idx++] = 2*H.a11*H.a31 - 2*H.a12*H.a32*b; A.data[idx++] = H.a21*H.a21 - H.a22*H.a22*b; A.data[idx++] = 2*H.a21*H.a31 - 2*H.a22*H.a32*b; A.data[idx++] = H.a31*H.a31 - H.a32*H.a32*b; } } } /** * Extracts calibration for the reference frame */ void extractReferenceW( DMatrixRMaj nv ) { W0.a11 = nv.data[0]; W0.a12 = W0.a21 = nv.data[1]; W0.a13 = W0.a31 = nv.data[2]; W0.a22 = nv.data[3]; W0.a23 = W0.a32 = nv.data[4]; W0.a33 = nv.data[5]; } /** * Converts W into a pinhole camera model by finding the cholesky decomposition */ void convertW( Homography2D_F64 w, CameraPinhole c ) { // inv(w) = K*K' tmp.setTo(w); CommonOps_DDF3.divide(tmp, tmp.a33); CommonOps_DDF3.cholU(tmp); CommonOps_DDF3.invert(tmp, K); CommonOps_DDF3.divide(K, K.a33); c.fx = K.a11; c.fy = knownAspectRatio ? (K.a22 + c.fx*aspectRatio)/2.0 : K.a22; c.skew = zeroSkew ? 0 : K.a12; c.cx = principlePointOrigin ? 0 : K.a13; c.cy = principlePointOrigin ? 0 : K.a23; } /** * Extracts calibration for the non-reference frames * * w = H^-T*w*H^-1 */ void extractCalibration( Homography2D_F64 Hinv, CameraPinhole c ) { CommonOps_DDF3.multTransA(Hinv, W0, tmp); CommonOps_DDF3.mult(tmp, Hinv, Wi); convertW(Wi, c); } /** * Ensures the determinant is one then inverts the homogrpahy */ public boolean computeInverseH( List homography0toI ) { listHInv.reset(); int N = homography0toI.size(); for (int i = 0; i < N; i++) { Homography2D_F64 H = homography0toI.get(i); Homography2D_F64 Hinv = listHInv.grow(); // Ensure the determinant is one double d = CommonOps_DDF3.det(H); if (d < 0) CommonOps_DDF3.divide(H, -Math.pow(-d, 1.0/3), Hinv); else CommonOps_DDF3.divide(H, Math.pow(d, 1.0/3), Hinv); // Now invert the matrix if (!CommonOps_DDF3.invert(Hinv, Hinv)) { return false; } } return true; } public DogArray getFound() { return calibration; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy