All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.selfcalib.TwoViewToCalibratingHomography Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2023, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.selfcalib;

import boofcv.abst.geo.Triangulate2ViewsMetric;
import boofcv.alg.geo.DecomposeEssential;
import boofcv.alg.geo.DecomposeProjectiveToMetric;
import boofcv.alg.geo.MultiViewOps;
import boofcv.alg.geo.PerspectiveOps;
import boofcv.factory.geo.FactoryMultiView;
import boofcv.misc.BoofMiscOps;
import boofcv.struct.calib.CameraPinhole;
import boofcv.struct.geo.AssociatedPair;
import boofcv.struct.geo.AssociatedTriple;
import georegression.struct.point.Point3D_F64;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.se.Se3_F64;
import georegression.transform.se.SePointOps_F64;
import lombok.Getter;
import org.ddogleg.struct.DogArray;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.factory.LinearSolverFactory_DDRM;
import org.ejml.interfaces.linsol.LinearSolver;

import java.util.List;

/**
 * Estimates the calibrating/rectifying homography when given a trifocal tensor and two calibration matrices for
 * the first two views. Observations are used to select the best hypothesis out of the four possible camera motions.
 *
 * Procedure:
 * 
    *
  1. Get fundamental and camera matrices from trifocal tensor
  2. *
  3. Use given calibration matrices to compute essential matrix
  4. *
  5. Decompose essential matrix to get 4 possible motions from view 1 to view 2
  6. *
  7. Use reprojection error and visibility constraints to select best hypothesis
  8. *
* * Reprojection error is computed by triangulating each point in view-1 using views-1 and view-2. This is then * switched to view-3's reference frame and the reprojection error found there. A similar process is repeated using * triangulation from view-1 and view-3. In each view it's checked if the feature appears behind the camera and * increments the invalid counter if it does. * * When selecting a hypothesis the hypothesis with the most points appearing in front of call cameras is given priority * over lower reprojection error. * * When applied to view 2, the found translation should have a norm(T) = 1. * *
    *
  1. P. Abeles, "BoofCV Technical Report: Automatic Camera Calibration" 2020-1
  2. *
* * @author Peter Abeles */ public class TwoViewToCalibratingHomography { /** used to triangulate feature locations when checking a solution */ public Triangulate2ViewsMetric triangulate = FactoryMultiView.triangulate2ViewMetric(null); // Decomposes the essential matrix public final DecomposeEssential decomposeEssential = new DecomposeEssential(); // Input: Camera matric for view-2 with implicit P1=[I|0] for view-1 public final DMatrixRMaj P2 = new DMatrixRMaj(3, 4); // Input: Fundamental matrix public final DMatrixRMaj F21 = new DMatrixRMaj(3, 3); // Essential matrix for the first two views public final DMatrixRMaj E21 = new DMatrixRMaj(3, 3); //-------------------------------------------------------------------------------- // Output Data Structures /** List of all hopotheses for calibrating homography */ public final DogArray hypothesesH = new DogArray<>(() -> new DMatrixRMaj(4, 4)); /** Which hypothesis was selected as the best. Call {@link #getCalibrationHomography()} as an alternative */ public @Getter int bestSolutionIdx; /** The number of invalid observations that appeared behind the camera in the best hypothesis */ public @Getter int bestInvalid = Integer.MAX_VALUE; /** The metric fit error found in view-2 for the best hypothesis. Computed from SVD */ public @Getter double bestModelError = Double.MAX_VALUE; //------------------------------------------------------------------------------ // work space variables private final DMatrixRMaj A = new DMatrixRMaj(3, 3); private final Vector3D_F64 a = new Vector3D_F64(); private final DMatrixRMaj AK1 = new DMatrixRMaj(3, 3); private final DMatrixRMaj KiR = new DMatrixRMaj(3, 3); // Given and estimated intrinsic calibration private final CameraPinhole intrinsic1 = new CameraPinhole(); private final CameraPinhole intrinsic2 = new CameraPinhole(); // motion from camera views private final Se3_F64 view_1_to_2 = new Se3_F64(); // H for elevating projective to metric view private final DMatrixRMaj calibratingH = new DMatrixRMaj(4, 4); // location of 3D feature in view 1 private final Point3D_F64 pointIn1 = new Point3D_F64(); // location of 3D feature in the current view being considered private final Point3D_F64 Xcam = new Point3D_F64(); // storage for normalized image coordinates private final AssociatedTriple an = new AssociatedTriple(); // Linear solver private final LinearSolver linear = LinearSolverFactory_DDRM.leastSquares(9, 3); private final DMatrixRMaj matA = new DMatrixRMaj(9, 3); private final DMatrixRMaj matX = new DMatrixRMaj(9, 1); private final DMatrixRMaj matB = new DMatrixRMaj(9, 1); private final DecomposeProjectiveToMetric projectiveToMetric = new DecomposeProjectiveToMetric(); // Used to normalize data for better stability when used in a linear solver private final DMatrixRMaj K1_inv = new DMatrixRMaj(3, 3); private final DMatrixRMaj K2_prime = new DMatrixRMaj(3, 3); private final DMatrixRMaj P1_prime = new DMatrixRMaj(3, 4); private final DMatrixRMaj P2_prime = new DMatrixRMaj(3, 4); private final DMatrixRMaj H_prime = new DMatrixRMaj(4, 4); private final DMatrixRMaj P_tmp = new DMatrixRMaj(3, 4); /** * Specify known geometric relationship between the two views * * @param F21 (Input) Fundamental matrix between view-1 and view-2 * @param P2 (Input) Projective camera matrix for view-1 with inplicit identity matrix view-1 */ public void initialize( DMatrixRMaj F21, DMatrixRMaj P2 ) { // TODO add image width,height here and use to normalize BoofMiscOps.checkTrue(F21.numRows == 3 && F21.numCols == 3); BoofMiscOps.checkTrue(P2.numRows == 3 && P2.numCols == 4); this.F21.setTo(F21); this.P2.setTo(P2); } /** * Estimate the calibrating homography with the given assumptions about the intrinsic calibration matrices * for the first two of three views. * * @param K1 (input) known intrinsic camera calibration matrix for view-1 * @param K2 (input) known intrinsic camera calibration matrix for view-2 * @param observations (input) observations for the two views. Used to select best solution * @return true if it could find a solution. Failure is a rare condition which requires noise free data. */ public boolean process( DMatrixRMaj K1, DMatrixRMaj K2, List observations ) { // TODO try to improve numerics by reducing the scale of K1 and K2 to 0 to 1.0 for diagonal elements // then undo it bestSolutionIdx = -1; // Using the provided calibration matrices, extract potential camera motions MultiViewOps.fundamentalToEssential(F21, K1, K2, E21); decomposeEssential.decompose(E21); // Use these camera motions to guess different calibrating homographies List list_view_1_to_2 = decomposeEssential.getSolutions(); computeHypothesesForH(K1, K2, list_view_1_to_2); // DESIGN NOTE: Could swap the role of view-2 and view-3 if view-2 is pathological // Select the best hypothesis bestInvalid = Integer.MAX_VALUE; bestModelError = Double.MAX_VALUE; for (int motionIdx = 0; motionIdx < hypothesesH.size; motionIdx++) { // computes the reprojection error, valid projections, and fixes sign/scale of H int invalid = checkGeometry(list_view_1_to_2.get(motionIdx), hypothesesH.get(motionIdx), K1, K2, observations); if (invalid == Integer.MAX_VALUE) continue; // All hypotheses should have the same reprojection error. Only by applying a geometric constraints do you // know which is better if (invalid < bestInvalid) { bestInvalid = invalid; bestSolutionIdx = motionIdx; bestModelError = projectiveToMetric.singularError; // this is the same for every hypothesis } } return bestSolutionIdx >= 0; } /** * Returns the found calibration/rectifying homography. */ public DMatrixRMaj getCalibrationHomography() { return hypothesesH.get(bestSolutionIdx); } /** * Go through all the found camera motions and generate a hypothesis for each one. Care is taken to compute * the hypothesis in a numerically stable way. The left and right hand side of the equation (see in code comments) * are only equal up to a scale factor. So first the scale factor is found by computing it several times and * picking the one with the largest denominator to avoid numerical issues. Once the scale factor is known then * a linear system is created that can be easily solved for. * * Technically the solution is found when finding the scale factor, but only a single equation for each unknown * is used there. Once the scale factor is known then all the variables can be used resulting in a more stable * solution. */ void computeHypothesesForH( DMatrixRMaj K1, DMatrixRMaj K2, List list_view_1_to_2 ) { // TODO normalize once using width and height // Improve numerics by normalizing based in K1. All values will be close to 0 to 1 CommonOps_DDRM.invert(K1, K1_inv); CommonOps_DDRM.mult(K1_inv, K2, K2_prime); // P1' = inv(K1)*P1 CommonOps_DDRM.insert(K1_inv, P1_prime, 0, 0); // P2' = inv(k1)*P2 CommonOps_DDRM.mult(K1_inv, P2, P2_prime); // Make view-1 = [I,0] again MultiViewOps.projectiveToIdentityH(P1_prime, H_prime); CommonOps_DDRM.mult(P2_prime, H_prime, P_tmp); P2_prime.setTo(P_tmp); // P2*H ~= [A,a]*H = [A,a]*[K1 0;v',1] // AK ~= A*K1 PerspectiveOps.projectionSplit(P2_prime, A, a); AK1.setTo(A); // CommonOps_DDRM.mult(A,K1, AK1); CommonOps_DDRM.setIdentity(calibratingH); // Normally to construct H you would do the following below, but because we normalized it so that K1=eye(3) // this is no longer needed // CommonOps_DDRM.insert(K1,calibratingH,0,0); // calibratingH.set(3,3,1); hypothesesH.reset(); for (int motionIdx = 0; motionIdx < list_view_1_to_2.size(); motionIdx++) { view_1_to_2.setTo(list_view_1_to_2.get(motionIdx)); // K2*[R,T] = [K2*R, K2*T] = P2*H // KR = K2*R CommonOps_DDRM.mult(K2_prime, view_1_to_2.R, KiR); // Find the scale factor between AK1 and AKiR. Brute force through all possible combinations and select // the one which is least prone to numerical instability due to a small denominator double bestBottom = 0; double bestScale = 0.0; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { for (int k = 0; k < 3; k++) { if (i == k) continue; double top = AK1.get(i, j)*a.getIdx(k) - AK1.get(k, j)*a.getIdx(i); double bottom = a.getIdx(k)*KiR.get(i, j) - a.getIdx(i)*KiR.get(k, j); double scale = top/bottom; if (Math.abs(bottom) > bestBottom) { bestBottom = Math.abs(bottom); bestScale = scale; } } } } // Construct a linear system and solve for the 3 unknowns in v. A linear system is used rather than the // commented out algebraic solution de to the possibility of it blowing up if sum of "a" is zero for (int j = 0, row = 0; j < 3; j++) { for (int i = 0; i < 3; i++, row++) { matA.set(row, j, a.getIdx(i)); matB.set(row, 0, KiR.get(i, j)*bestScale - AK1.get(i, j)); } } if (!linear.setA(matA)) { continue; } linear.solve(matB, matX); for (int i = 0; i < 3; i++) { calibratingH.set(3, i, matX.get(i)); } // // algebraic solution, but has at least one known issue // for (int j = 0; j < 3; j++) { // double sumA = 0; // double sumK = 0; // for (int i = 0; i < 3; i++) { // sumA += AK1.get(i, j); // sumK += KiR.get(i, j); // } // double v_j = (sumK * bestScale - sumA) / (a.x + a.y + a.z); // NOTE: Degenerate geometry here of sum is zero? // calibratingH.set(3, j, v_j); // System.out.println("v[" + j + "] = " + v_j); // } // DESIGN NOTE: // Could Lagrange multipliers be used here where KiR is known to have zeros? // NOTE: At this point the following is not always true K[R|T] ~= P*H // The sign of H(4,4) needs to be set correctly and this will be done later on since doing so now // means extra more complex code CommonOps_DDRM.mult(H_prime, calibratingH, hypothesesH.grow()); } } /** * Score a hypothesis based on how often the triangulated object appears in front of the camera in each of the * views. * * NOTE: If you ignore this physical constraint all 4 hypotheses are equally valid and produce consistent camera * matrices. Thus reprojection error and the svd fit error cannot be used here since they are identical in all * cases. * * @param view_1_to_2e (Input) camera motion returned by essential matrix * @param H (Input, Output) Calibrating homography. Modifies H(3,3) to set the scale to something reasonable and * for direction * @param K1 (Input) Calibration matrix for view 1 * @param K2 (Input) Calibration matrix for view 1 * @param observations (Input) observations from both cameras * @return Number of times it failed the geometric test */ private int checkGeometry( Se3_F64 view_1_to_2e, DMatrixRMaj H, DMatrixRMaj K1, DMatrixRMaj K2, List observations ) { PerspectiveOps.matrixToPinhole(K1, 0, 0, intrinsic1); PerspectiveOps.matrixToPinhole(K2, 0, 0, intrinsic2); // Use of this function forces K2 to be what we said it would be, also provide a mechanism to compute a // model fit error if (!projectiveToMetric.projectiveToMetricKnownK(P2, H, K2, view_1_to_2)) return Integer.MAX_VALUE; // NOTE: seems like much of the above calculation only really needs to be done once for all views and this could // be speed up, but doesn't seem like it's worth the effort right now. // As mentioned earlier, the sign of H(4,4) will be wrong sometimes. This is where we fix it double scale = view_1_to_2.T.norm(); view_1_to_2.T.divide(scale); if (view_1_to_2e.T.distance(view_1_to_2.T) > 1.0) { scale *= -1; } view_1_to_2.setTo(view_1_to_2e); // Besides fixing the sign, also scale it so that the resulting translation vector has norm(1) for view-2 H.set(3, 3, 1.0/scale); // count the number of times it appears behind a camera int foundInvalid = 0; for (int i = 0; i < observations.size(); i++) { AssociatedPair ap = observations.get(i); PerspectiveOps.convertPixelToNorm(intrinsic1, ap.p1.x, ap.p1.y, an.p1); PerspectiveOps.convertPixelToNorm(intrinsic2, ap.p2.x, ap.p2.y, an.p2); triangulate.triangulate(an.p1, an.p2, view_1_to_2, pointIn1); if (pointIn1.z < 0) foundInvalid++; SePointOps_F64.transform(view_1_to_2, pointIn1, Xcam); if (Xcam.z < 0) foundInvalid++; } return foundInvalid; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy