boofcv.alg.geo.triangulate.ResidualsTriangulateProjective Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-geo Show documentation
Show all versions of boofcv-geo Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.geo.triangulate;
import boofcv.alg.geo.PerspectiveOps;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point4D_F64;
import org.ddogleg.optimization.functions.FunctionNtoM;
import org.ejml.data.DMatrixRMaj;
import java.util.List;
/**
* Residuals for a projective triangulation where the difference between predicted and observed pixels
* are minimized. The optimized point is in homogenous coordinates.
*
* @author Peter Abeles
*/
@SuppressWarnings({"NullAway.Init"})
public class ResidualsTriangulateProjective implements FunctionNtoM {
// observations of the same feature in normalized coordinates
private List observations;
// Known camera motion
private List cameraMatrices;
// 3D point in homogenous coordinates
private final Point4D_F64 point = new Point4D_F64();
private final Point2D_F64 predicted = new Point2D_F64();
/**
* Configures inputs.
*
* @param observations Observations of the feature at different locations. Pixels.
* @param cameraMatrices Camera matrices
*/
public void setObservations( List observations, List cameraMatrices ) {
if (observations.size() != cameraMatrices.size())
throw new IllegalArgumentException("Different size lists");
this.observations = observations;
this.cameraMatrices = cameraMatrices;
}
@Override
public int getNumOfInputsN() {
return 4;
}
@Override
public int getNumOfOutputsM() {
return observations.size()*2;
}
@Override
public void process( double[] input, double[] output ) {
point.x = input[0];
point.y = input[1];
point.z = input[2];
point.w = input[3];
int outputIdx = 0;
for (int i = 0; i < observations.size(); i++) {
Point2D_F64 p = observations.get(i);
DMatrixRMaj m = cameraMatrices.get(i);
PerspectiveOps.renderPixel(m, point, predicted);
output[outputIdx++] = predicted.x - p.x;
output[outputIdx++] = predicted.y - p.y;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy