All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.triangulate.TriangulateProjectiveLinearDLT Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.triangulate;

import boofcv.alg.geo.GeometricResult;
import boofcv.alg.geo.LowLevelMultiViewOps;
import boofcv.alg.geo.NormalizationPoint2D;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point4D_F64;
import lombok.Getter;
import lombok.Setter;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.linsol.svd.SolveNullSpaceSvd_DDRM;

import java.util.Arrays;
import java.util.List;

/**
 * 

* Triangulates the location of a 3D point given two or more views of the point using the * Discrete Linear Transform (DLT). Works with an uncalibrated camera. Pixel observations and camera projection * matrices are input. Works on projective geometry. Normalization is automatically applied each row in the projective * matrix. *

* *

A geometric test is done using singular values. There should be a fairly obvious null space. If this * is not the case then the geometry will be considered bad

* *

* [1] Page 312 in R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003 *

* * @author Peter Abeles */ public class TriangulateProjectiveLinearDLT { private final SolveNullSpaceSvd_DDRM solverNull = new SolveNullSpaceSvd_DDRM(); private final DMatrixRMaj nullspace = new DMatrixRMaj(4, 1); private final DMatrixRMaj A = new DMatrixRMaj(4, 4); /** used in geometry test */ public @Getter @Setter double singularThreshold = 1; // used for normalizing pixel coordinates and improving linear solution final NormalizationPoint2D stats = new NormalizationPoint2D(); /** *

* Given N observations of the same point from two views and a known motion between the * two views, triangulate the point's position in camera 'b' reference frame. *

* * @param observations Observation in each view in pixel coordinates. Not modified. * @param cameraMatrices Camera projection matrices, e.g. x = P*X. 3 by 4 projectives. Not modified. * @param found Output, found 3D point in homogenous coordinates. Modified. * @return true if triangulation was successful or false if it failed */ public GeometricResult triangulate( List observations, List cameraMatrices, Point4D_F64 found ) { if (observations.size() != cameraMatrices.size()) throw new IllegalArgumentException("Number of observations must match the number of motions"); LowLevelMultiViewOps.computeNormalization(observations, stats); final int N = cameraMatrices.size(); A.reshape(2*N, 4); int index = 0; for (int i = 0; i < N; i++) { index = addView(cameraMatrices.get(i), observations.get(i), index); } if (!solverNull.process(A, 1, nullspace)) return GeometricResult.SOLVE_FAILED; // if the second smallest singular value is the same size as the smallest there's problem double[] sv = solverNull.getSingularValues(); Arrays.sort(sv); if (sv[1]*singularThreshold <= sv[0]) { return GeometricResult.GEOMETRY_POOR; } double[] ns = nullspace.data; found.x = ns[0]; found.y = ns[1]; found.z = ns[2]; found.w = ns[3]; return GeometricResult.SUCCESS; } /** * Adds a view to the A matrix. Computed using cross product. */ private int addView( DMatrixRMaj P, Point2D_F64 a, int index ) { final double sx = stats.stdX, sy = stats.stdY; // final double cx = stats.meanX, cy = stats.meanY; // Easier to read the code when P is broken up this way // @formatter:off double r11 = P.data[0], r12 = P.data[1], r13 = P.data[2], r14=P.data[3]; double r21 = P.data[4], r22 = P.data[5], r23 = P.data[6], r24=P.data[7]; double r31 = P.data[8], r32 = P.data[9], r33 = P.data[10], r34=P.data[11]; // @formatter:on // These rows are derived by applying the scaling matrix to pixels and camera matrix // px = (a.x/sx - cx/sx) // A[0,0] = a.x*r31 - r11 (before normalization) // A[0,0] = px*r31 - (r11-cx*r31)/sx (after normalization) // first row A.data[index++] = (a.x*r31 - r11)/sx; A.data[index++] = (a.x*r32 - r12)/sx; A.data[index++] = (a.x*r33 - r13)/sx; A.data[index++] = (a.x*r34 - r14)/sx; // second row A.data[index++] = (a.y*r31 - r21)/sy; A.data[index++] = (a.y*r32 - r22)/sy; A.data[index++] = (a.y*r33 - r23)/sy; A.data[index++] = (a.y*r34 - r24)/sy; return index; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy