All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.trifocal.TrifocalAlgebraicPoint7 Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.trifocal;

import boofcv.alg.geo.LowLevelMultiViewOps;
import boofcv.struct.geo.AssociatedTriple;
import boofcv.struct.geo.TrifocalTensor;
import georegression.struct.point.Point3D_F64;
import org.ddogleg.optimization.UnconstrainedLeastSquares;
import org.ddogleg.optimization.UtilOptimize;
import org.ddogleg.optimization.functions.FunctionNtoM;
import org.ejml.data.DMatrixRMaj;

import java.util.List;

/**
 * 

* Initially computes the trifocal tensor using the linear method {@link TrifocalLinearPoint7}, but * then iteratively refines the solution to minimize algebraic error by adjusting the two epipoles. * The solution will enforce all the constraints and be geometrically valid. See page 395 in [1]. *

* *

Note: This works with planes!

* *

References:

*
    *
  • R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
  • *
* * @author Peter Abeles */ public class TrifocalAlgebraicPoint7 extends TrifocalLinearPoint7 { // optimization algorithm of function private UnconstrainedLeastSquares optimizer; private ErrorFunction errorFunction = new ErrorFunction(); // optimization parameters private int maxIterations; private double ftol; private double gtol; // storage for epipoles being optimised private double param[] = new double[6]; /** * Configures optimization algorithms * * @param optimizer Which least squares minimizer should be used. * @param maxIterations Maximum number of iterations it will optimize for * @param ftol Convergence tolerance. See {@link UnconstrainedLeastSquares} for details. * @param gtol Convergence tolerance. See {@link UnconstrainedLeastSquares} for details. */ public TrifocalAlgebraicPoint7( UnconstrainedLeastSquares optimizer, int maxIterations, double ftol, double gtol ) { this.optimizer = optimizer; this.maxIterations = maxIterations; this.ftol = ftol; this.gtol = gtol; } @Override public boolean process( List observations, TrifocalTensor solution ) { if (observations.size() < 7) throw new IllegalArgumentException("At least 7 correspondences must be provided"); // compute normalization to reduce numerical errors LowLevelMultiViewOps.computeNormalization(observations, N1, N2, N3); // compute solution in normalized pixel coordinates createLinearSystem(observations); // solve for the trifocal tensor solveLinearSystem(); // minimize geometric error minimizeWithGeometricConstraints(); // undo normalization removeNormalization(solution); return true; } /** * Minimize the algebraic error using LM. The two epipoles are the parameters being optimized. */ private void minimizeWithGeometricConstraints() { extractEpipoles.setTensor(solutionN); extractEpipoles.extractEpipoles(e2, e3); // encode the parameters being optimized // @formatter:off param[0] = e2.x; param[1] = e2.y; param[2] = e2.z; param[3] = e3.x; param[4] = e3.y; param[5] = e3.z; // @formatter:on // adjust the error function for the current inputs errorFunction.init(); // set up the optimization algorithm optimizer.setFunction(errorFunction, null); optimizer.initialize(param, gtol, ftol); // optimize until convergence or the maximum number of iterations UtilOptimize.process(optimizer, maxIterations); // get the results and compute the trifocal tensor double found[] = optimizer.getParameters(); paramToEpipoles(found, e2, e3); enforce.process(e2, e3, A); enforce.extractSolution(solutionN); } private static void paramToEpipoles(double[] found , Point3D_F64 e2 , Point3D_F64 e3 ) { // @formatter:off e2.x = found[0]; e2.y = found[1]; e2.z = found[2]; e3.x = found[3]; e3.y = found[4]; e3.z = found[5]; // @formatter:on } /** * Computes the algebraic error for a given set of epipoles */ private class ErrorFunction implements FunctionNtoM { Point3D_F64 e2 = new Point3D_F64(); Point3D_F64 e3 = new Point3D_F64(); DMatrixRMaj errors = new DMatrixRMaj(1, 1); public void init() { errors.numRows = A.numRows; errors.numCols = 1; } @Override public int getNumOfInputsN() { return 6; } @Override public int getNumOfOutputsM() { return A.numRows; } @Override public void process( double[] input, double[] output ) { paramToEpipoles(input, e2, e3); enforce.process(e2, e3, A); errors.data = output; enforce.computeErrorVector(A, errors); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy