All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.trifocal.TrifocalLinearPoint7 Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.trifocal;

import boofcv.alg.geo.LowLevelMultiViewOps;
import boofcv.alg.geo.NormalizationPoint2D;
import boofcv.struct.geo.AssociatedTriple;
import boofcv.struct.geo.TrifocalTensor;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.SingularOps_DDRM;
import org.ejml.dense.row.decomposition.svd.SafeSvd_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F64;

import java.util.List;

/**
 * 

* Estimates the {@link TrifocalTensor} using a linear algorithm from 7 or more image points correspondences * from three views, see page 394 of [1] for details. After an initial linear solution has been computed * it is improved upon by applying geometric constraints. Note that the solution will not be optimal in a geometric * or algebraic sense, but can be used as an initial estimate for refinement algorithms. *

* *

* References: *

    *
  • R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
  • *
*

* * @author Peter Abeles * @see EnforceTrifocalGeometry */ public class TrifocalLinearPoint7 { // trifocal tensor computed from normalized coordinates protected TrifocalTensor solutionN = new TrifocalTensor(); // normalization matrices for points protected NormalizationPoint2D N1 = new NormalizationPoint2D(); protected NormalizationPoint2D N2 = new NormalizationPoint2D(); protected NormalizationPoint2D N3 = new NormalizationPoint2D(); // the linear system which is solved for protected DMatrixRMaj A = new DMatrixRMaj(7, 27); // svd used to extract the null space protected SingularValueDecomposition_F64 svdNull; // Solution in vector format protected DMatrixRMaj vectorizedSolution = new DMatrixRMaj(27, 1); // triple of points after normalization protected Point2D_F64 p1_norm = new Point2D_F64(); protected Point2D_F64 p2_norm = new Point2D_F64(); protected Point2D_F64 p3_norm = new Point2D_F64(); // enforces the geometry constraints protected EnforceTrifocalGeometry enforce = new EnforceTrifocalGeometry(); protected TrifocalExtractGeometries extractEpipoles = new TrifocalExtractGeometries(); // Epipoles needed to enforce the above constraints protected Point3D_F64 e2 = new Point3D_F64(); protected Point3D_F64 e3 = new Point3D_F64(); public TrifocalLinearPoint7() { svdNull = DecompositionFactory_DDRM.svd(24, 27, false, true, false); svdNull = new SafeSvd_DDRM(svdNull); } /** * Estimates the trifocal tensor given the set of observations * * @param observations Set of observations * @param solution Output: Where the solution is written to * @return true if successful and false if it fails */ public boolean process( List observations, TrifocalTensor solution ) { if (observations.size() < 7) throw new IllegalArgumentException( "At least 7 correspondences must be provided. Found " + observations.size()); // compute normalization to reduce numerical errors LowLevelMultiViewOps.computeNormalization(observations, N1, N2, N3); // compute solution in normalized pixel coordinates createLinearSystem(observations); // solve for the trifocal tensor solveLinearSystem(); // enforce geometric constraints to improve solution extractEpipoles.setTensor(solutionN); extractEpipoles.extractEpipoles(e2, e3); enforce.process(e2, e3, A); enforce.extractSolution(solutionN); // undo normalization removeNormalization(solution); return true; } /** * Constructs the linear matrix that describes from the 3-point constraint with linear * dependent rows removed */ protected void createLinearSystem( List observations ) { int N = observations.size(); A.reshape(4*N, 27); A.zero(); for (int i = 0; i < N; i++) { AssociatedTriple t = observations.get(i); N1.apply(t.p1, p1_norm); N2.apply(t.p2, p2_norm); N3.apply(t.p3, p3_norm); insert(i, 0, p1_norm.x); // tensor 1 insert(i, 1, p1_norm.y); // tensor 2 insert(i, 2, 1); // tensor 3 } } private void insert( int indexObs, int K, double xk ) { int start = 27*4*indexObs + 9*K; // i = 1, l = 1 int indexT33 = 8; int indexTi3 = 2; int indexT3l = 6; int indexTil = 0; A.data[start + indexT33] = xk*p2_norm.x*p3_norm.x; A.data[start + indexTi3] = -xk*p3_norm.x; A.data[start + indexT3l] = -xk*p2_norm.x; A.data[start + indexTil] = xk; // i = 1, l = 2 start += 27; indexT3l = 7; indexTil = 1; A.data[start + indexT33] = xk*p2_norm.x*p3_norm.y; A.data[start + indexTi3] = -xk*p3_norm.y; A.data[start + indexT3l] = -xk*p2_norm.x; A.data[start + indexTil] = xk; // i = 2, l = 1 start += 27; indexTi3 = 5; indexT3l = 6; indexTil = 3; A.data[start + indexT33] = xk*p2_norm.y*p3_norm.x; A.data[start + indexTi3] = -xk*p3_norm.x; A.data[start + indexT3l] = -xk*p2_norm.y; A.data[start + indexTil] = xk; // i = 2, l = 2 start += 27; indexTi3 = 5; indexT3l = 7; indexTil = 4; A.data[start + indexT33] = xk*p2_norm.y*p3_norm.y; A.data[start + indexTi3] = -xk*p3_norm.y; A.data[start + indexT3l] = -xk*p2_norm.y; A.data[start + indexTil] = xk; } /** * Computes the null space of the linear system to find the trifocal tensor */ protected boolean solveLinearSystem() { if (!svdNull.decompose(A)) return false; SingularOps_DDRM.nullVector(svdNull, true, vectorizedSolution); solutionN.convertFrom(vectorizedSolution); return true; } /** * Translates the trifocal tensor back into regular coordinate system */ protected void removeNormalization( TrifocalTensor solution ) { DMatrixRMaj N2_inv = N2.matrixInv(null); DMatrixRMaj N3_inv = N3.matrixInv(null); DMatrixRMaj N1 = this.N1.matrix(null); for (int i = 0; i < 3; i++) { DMatrixRMaj T = solution.getT(i); for (int j = 0; j < 3; j++) { for (int k = 0; k < 3; k++) { double sum = 0; for (int r = 0; r < 3; r++) { double n1 = N1.get(r, i); DMatrixRMaj TN = solutionN.getT(r); for (int s = 0; s < 3; s++) { double n2 = N2_inv.get(j, s); for (int t = 0; t < 3; t++) { sum += n1*n2*N3_inv.get(k, t)*TN.get(s, t); } } } T.set(j, k, sum); } } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy