All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.factory.geo.FactoryMultiView Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2023, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.factory.geo;

import boofcv.abst.geo.*;
import boofcv.abst.geo.bundle.*;
import boofcv.abst.geo.f.*;
import boofcv.abst.geo.h.HomographyDLT_to_Epipolar;
import boofcv.abst.geo.h.HomographyTLS_to_Epipolar;
import boofcv.abst.geo.h.LeastSquaresHomography;
import boofcv.abst.geo.pose.*;
import boofcv.abst.geo.selfcalib.*;
import boofcv.abst.geo.triangulate.*;
import boofcv.abst.geo.trifocal.WrapRefineThreeViewProjectiveGeometric;
import boofcv.abst.geo.trifocal.WrapTrifocalAlgebraicPoint7;
import boofcv.abst.geo.trifocal.WrapTrifocalLinearPoint7;
import boofcv.alg.geo.ModelObservationResidualN;
import boofcv.alg.geo.bundle.*;
import boofcv.alg.geo.f.DistanceEpipolarConstraint;
import boofcv.alg.geo.f.DistanceEpipolarConstraintPointing;
import boofcv.alg.geo.h.*;
import boofcv.alg.geo.pose.*;
import boofcv.alg.geo.robust.ModelGeneratorViews;
import boofcv.alg.geo.selfcalib.*;
import boofcv.alg.geo.triangulate.*;
import boofcv.alg.geo.trifocal.RefineThreeViewProjectiveGeometric;
import boofcv.alg.geo.trifocal.TrifocalAlgebraicPoint7;
import boofcv.misc.ConfigConverge;
import boofcv.struct.calib.ElevateViewInfo;
import boofcv.struct.geo.AssociatedPair;
import boofcv.struct.geo.AssociatedTriple;
import georegression.fitting.MotionTransformPoint;
import georegression.fitting.se.FitSpecialEuclideanOps_F64;
import georegression.struct.point.Point3D_F64;
import georegression.struct.se.Se3_F64;
import org.ddogleg.optimization.*;
import org.ddogleg.solver.PolynomialOps;
import org.ddogleg.solver.RootFinderType;
import org.ddogleg.struct.DogArray;
import org.ejml.data.DMatrixRMaj;
import org.ejml.data.DMatrixSparseCSC;
import org.jetbrains.annotations.Nullable;

/**
 * Factory for creating abstracted algorithms related to multi-view geometry
 *
 * @author Peter Abeles
 */
public class FactoryMultiView {
	/**
	 * Returns bundle adjustment with a sparse implementation for metric reconstruction. In most situations this is
	 * what you want to use, however dense bundle adjustment is available if the problem is small and degenerate.
	 *
	 * @param config (Optional) configuration
	 * @return bundle adjustment
	 */
	public static BundleAdjustment bundleSparseMetric( @Nullable ConfigBundleAdjustment config ) {
		if (config == null)
			config = new ConfigBundleAdjustment();

		UnconstrainedLeastSquaresSchur minimizer =
				FactoryOptimizationSparse.leastSquaresSchur(config.optimizer);

		// Add a robust minimizer, if configured to do so
		if (config.loss.isRobust()) {
			FactoryLossFunctions.Funcs funcs = FactoryLossFunctions.general(config.loss);
			minimizer.setLoss(funcs.function, funcs.gradient);
		}

		return new BundleAdjustmentSchur_DSCC<>(minimizer,
				new BundleAdjustmentMetricResidualFunction(),
				new BundleAdjustmentMetricSchurJacobian_DSCC(),
				new CodecSceneStructureMetric());
	}

	/**
	 * Returns bundle adjustment with a sparse implementation for projective reconstruction. In most situations this is
	 * what you want to use, however dense bundle adjustment is available if the problem is small and degenerate.
	 *
	 * @param config (Optional) configuration
	 * @return bundle adjustment
	 */
	public static BundleAdjustment bundleSparseProjective( @Nullable ConfigBundleAdjustment config ) {
		if (config == null)
			config = new ConfigBundleAdjustment();

		UnconstrainedLeastSquaresSchur minimizer =
				FactoryOptimizationSparse.leastSquaresSchur(config.optimizer);

		// Add a robust minimizer, if configured to do so
		if (config.loss.isRobust()) {
			FactoryLossFunctions.Funcs funcs = FactoryLossFunctions.general(config.loss);
			minimizer.setLoss(funcs.function, funcs.gradient);
		}

		return new BundleAdjustmentSchur_DSCC<>(minimizer,
				new BundleAdjustmentProjectiveResidualFunction(),
				new BundleAdjustmentProjectiveSchurJacobian_DSCC(),
				new CodecSceneStructureProjective());
	}

	/**
	 * Returns bundle adjustment with a dense implementation for metric reconstruction. While much slower than a
	 * sparse solver, a dense solver can handle systems which are degenerate.
	 *
	 * @param robust If true a smaller but robust solver will be used.
	 * @param config (Optional) configuration
	 * @return bundle adjustment
	 */
	public static BundleAdjustment bundleDenseMetric( boolean robust,
																			@Nullable ConfigBundleAdjustment config ) {
		if (config == null)
			config = new ConfigBundleAdjustment();

		UnconstrainedLeastSquaresSchur minimizer =
				FactoryOptimization.leastSquaresSchur(config.optimizer);

		// Add a robust minimizer, if configured to do so
		if (config.loss.isRobust()) {
			FactoryLossFunctions.Funcs funcs = FactoryLossFunctions.general(config.loss);
			minimizer.setLoss(funcs.function, funcs.gradient);
		}

		return new BundleAdjustmentSchur_DDRM<>(minimizer,
				new BundleAdjustmentMetricResidualFunction(),
				new BundleAdjustmentMetricSchurJacobian_DDRM(),
				new CodecSceneStructureMetric());
	}

	/**
	 * Returns bundle adjustment with a sparse implementation for projective reconstruction. In most stiuations this is
	 * what you want to use, however dense bundle adjustment is available if the problem is small and degenerate.
	 *
	 * @param robust If true a smaller but robust solver will be used.
	 * @param config (Optional) configuration
	 * @return bundle adjustment
	 */
	public static BundleAdjustment
	bundleDenseProjective( boolean robust, @Nullable ConfigBundleAdjustment config ) {
		if (config == null)
			config = new ConfigBundleAdjustment();

		UnconstrainedLeastSquaresSchur minimizer =
				FactoryOptimization.leastSquaresSchur(config.optimizer);

		// Add a robust minimizer, if configured to do so
		if (config.loss.isRobust()) {
			FactoryLossFunctions.Funcs funcs = FactoryLossFunctions.general(config.loss);
			minimizer.setLoss(funcs.function, funcs.gradient);
		}

		return new BundleAdjustmentSchur_DDRM<>(minimizer,
				new BundleAdjustmentProjectiveResidualFunction(),
				new BundleAdjustmentProjectiveSchurJacobian_DDRM(),
				new CodecSceneStructureProjective());
	}

	/**
	 * Returns an algorithm for estimating a homography matrix given a set of {@link AssociatedPair}.
	 *
	 * @param normalizeInput If input is in pixel coordinates set to true. False if in normalized image coordinates.
	 * @return Homography estimator.
	 * @see HomographyDirectLinearTransform
	 */
	public static HomographyDLT_to_Epipolar homographyDLT( boolean normalizeInput ) {
		return new HomographyDLT_to_Epipolar(new HomographyDirectLinearTransform(normalizeInput));
	}

	/**
	 * Returns an algorithm for estimating a homography matrix given a set of {@link AssociatedPair}.
	 *
	 * @return Homography estimator.
	 * @see HomographyTotalLeastSquares
	 */
	public static HomographyTLS_to_Epipolar homographyTLS() {
		return new HomographyTLS_to_Epipolar(new HomographyTotalLeastSquares());
	}

	/**
	 * Estimator that will find the homography and radial distortion terms. Models lens with
	 * {@link boofcv.struct.calib.CameraDivision} and requires at least 6 points.
	 *
	 * @return Homography + radial distortion estimator.
	 * @see HomographyRadial6Pts
	 */
	public static HomographyRadial6Pts homographyWithRadial() {
		return new HomographyRadial6Pts();
	}

	/**
	 * Creates a non-linear optimizer for refining estimates of homography matrices.
	 *
	 * @param tol Tolerance for convergence. Try 1e-8
	 * @param maxIterations Maximum number of iterations it will perform. Try 100 or more.
	 * @return Homography refinement
	 * @see HomographyResidualSampson
	 * @see HomographyResidualTransfer
	 */
	public static LeastSquaresHomography homographyRefine( double tol, int maxIterations, EpipolarError type ) {
		ModelObservationResidualN residuals = switch (type) {
			case SIMPLE -> new HomographyResidualTransfer();
			case SAMPSON -> new HomographyResidualSampson();
			default -> throw new IllegalArgumentException("Type not supported: " + type);
		};

		return new LeastSquaresHomography(tol, maxIterations, residuals);
	}

	/**
	 * 

* Returns an algorithm for estimating a fundamental or essential matrix given a set of * {@link AssociatedPair} in pixel coordinates. The number of hypotheses returned and minimum number of samples * is dependent on the implementation. The ambiguity from multiple hypotheses can be resolved using other * sample points and testing additional constraints. *

* *

* All estimated epipolar matrices will have the following constraint:
* x'*F*x = 0, where F is the epipolar matrix, x' = currLoc, and x = keyLoc. *

* *

* There are more differences between these algorithms than the minimum number of sample points. Consult * the literature for information on critical surfaces which will work or not work with each algorithm. In * general, algorithm which require fewer samples have less issues with critical surfaces than the 8-point * algorithm. *

* *

* IMPORTANT: When estimating a fundamental matrix use pixel coordinates. When estimating an essential matrix * use normalized image coordinates from a calibrated camera. *

* *

* IMPORTANT. The number of allowed sample points varies depending on the algorithm. The 8 point algorithm can * process 8 or more points. Both the 5 an 7 point algorithms require exactly 5 and 7 points exactly. In addition * the 5-point algorithm is only for the calibrated (essential) case. *

* * @param which Specifies which algorithm is to be created * @return Fundamental or essential estimation algorithm that returns multiple hypotheses. * @see boofcv.alg.geo.f.EssentialNister5 * @see boofcv.alg.geo.f.FundamentalLinear7 * @see boofcv.alg.geo.f.FundamentalLinear8 */ public static EstimateNofEpipolar fundamental_N( EnumFundamental which ) { return switch (which) { case LINEAR_8 -> new Estimate1toNofEpipolar(new WrapFundamentalLinear8(true)); case LINEAR_7 -> new WrapFundamentalLinear7(true); }; } /** * Estimates an essential matrix given observations as normalized image coordinates. All N solutions are returned */ public static EstimateNofEpipolar essential_N( EnumEssential which ) { return switch (which) { case LINEAR_8 -> new Estimate1toNofEpipolar(new WrapFundamentalLinear8(false)); case LINEAR_7 -> new WrapFundamentalLinear7(false); case NISTER_5 -> new WrapEssentialNister5(); }; } /** * Estimates an essential matrix given observations as pointing vectors */ public static EstimateNofEpipolarPointing essentialPointing_N( EnumEssential which ) { return switch (which) { case NISTER_5 -> new WrapEssentialNister5Pointing(); default -> throw new IllegalArgumentException("Unsupported algorithm. Update the code? " + which); }; } /** *

* Similar to {@link #fundamental_N}, but it returns only a single hypothesis. If * the underlying algorithm generates multiple hypotheses they are resolved by considering additional * sample points. For example, if you are using the 7 point algorithm at least one additional sample point * is required to resolve that ambiguity. So 8 or more sample points are now required. *

* *

* All estimated epipolar matrices will have the following constraint:
* x'*F*x = 0, where F is the epipolar matrix, x' = currLoc, and x = keyLoc. *

* *

* See {@link #fundamental_N} for a description of the algorithms and what 'minimumSamples' * and 'isFundamental' do. *

* *

* The 8-point algorithm already returns a single hypothesis and ignores the 'numRemoveAmbiguity' parameter. * All other algorithms require one or more points to remove ambiguity. Understanding a bit of theory is required * to understand what a good number of points is. If a single point is used then to select the correct answer that * point must be in the inlier set. If more than one point, say 10, then not all of those points must be in the * inlier set, *

* * @param which Specifies which algorithm is to be created * @param numRemoveAmbiguity Number of sample points used to prune hypotheses. Ignored if only a single solution. * @return Fundamental or essential estimation algorithm that returns a single hypothesis. * @see GeoModelEstimatorNto1 */ public static Estimate1ofEpipolar fundamental_1( EnumFundamental which, int numRemoveAmbiguity ) { if (which == EnumFundamental.LINEAR_8) { return new WrapFundamentalLinear8(true); } if (numRemoveAmbiguity <= 0) throw new IllegalArgumentException("numRemoveAmbiguity must be greater than zero"); EstimateNofEpipolar alg = fundamental_N(which); DistanceEpipolarConstraint distance = new DistanceEpipolarConstraint(); return new EstimateNto1ofEpipolar(alg, distance, numRemoveAmbiguity); } public static Estimate1ofEpipolar essential_1( EnumEssential which, int numRemoveAmbiguity ) { if (which == EnumEssential.LINEAR_8) { return new WrapFundamentalLinear8(false); } if (numRemoveAmbiguity <= 0) throw new IllegalArgumentException("numRemoveAmbiguity must be greater than zero"); EstimateNofEpipolar alg = essential_N(which); var distance = new DistanceEpipolarConstraint(); return new EstimateNto1ofEpipolar(alg, distance, numRemoveAmbiguity); } public static EstimateNto1ofEpipolarPointing essentialPointing_1( EnumEssential which, int numRemoveAmbiguity ) { // if (which == EnumEssential.LINEAR_8) { // return new WrapFundamentalLinear8(false); // } if (numRemoveAmbiguity <= 0) throw new IllegalArgumentException("numRemoveAmbiguity must be greater than zero"); EstimateNofEpipolarPointing alg = essentialPointing_N(which); var distance = new DistanceEpipolarConstraintPointing(); return new EstimateNto1ofEpipolarPointing(alg, distance, numRemoveAmbiguity); } /** * Creates a non-linear optimizer for refining estimates of fundamental or essential matrices. * * @param tol Tolerance for convergence. Try 1e-8 * @param maxIterations Maximum number of iterations it will perform. Try 100 or more. * @return RefineEpipolar * @see boofcv.alg.geo.f.FundamentalResidualSampson * @see boofcv.alg.geo.f.FundamentalResidualSimple */ public static RefineEpipolar fundamentalRefine( double tol, int maxIterations, EpipolarError type ) { return switch (type) { case SAMPSON -> new LeastSquaresFundamental(tol, maxIterations, true); case SIMPLE -> new LeastSquaresFundamental(tol, maxIterations, false); }; } /** * Creates a trifocal tensor estimation algorithm. * * @param config configuration for the estimator * @return Trifocal tensor estimator */ public static Estimate1ofTrifocalTensor trifocal_1( @Nullable ConfigTrifocal config ) { if (config == null) { config = new ConfigTrifocal(); } return switch (config.which) { case LINEAR_7 -> new WrapTrifocalLinearPoint7(); case ALGEBRAIC_7 -> { ConfigConverge cc = config.converge; UnconstrainedLeastSquares optimizer = FactoryOptimization.levenbergMarquardt(null, false); TrifocalAlgebraicPoint7 alg = new TrifocalAlgebraicPoint7(optimizer, cc.maxIterations, cc.ftol, cc.gtol); yield new WrapTrifocalAlgebraicPoint7(alg); } default -> throw new IllegalArgumentException("Unknown type " + config.which); }; } /** * Used to refine three projective views. This is the same as refining a trifocal tensor. * * @return RefineThreeViewProjective */ public static RefineThreeViewProjective threeViewRefine( @Nullable ConfigThreeViewRefine config ) { if (config == null) config = new ConfigThreeViewRefine(); if (config.which == ConfigThreeViewRefine.Algorithm.GEOMETRIC) { RefineThreeViewProjectiveGeometric alg = new RefineThreeViewProjectiveGeometric(); alg.getConverge().setTo(config.converge); alg.setScale(config.normalizePixels); return new WrapRefineThreeViewProjectiveGeometric(alg); } throw new IllegalArgumentException("Unknown algorithm " + config.which); } /** * Creates an estimator for the PnP problem that uses only three observations, which is the minimal case * and known as P3P. * *

NOTE: Observations are in normalized image coordinates NOT pixels.

* * @param which The algorithm which is to be returned. * @param numIterations Number of iterations. Only used by some algorithms and recommended number varies * significantly by algorithm. * @return An estimator which can return multiple estimates. */ public static EstimateNofPnP pnp_N( EnumPNP which, int numIterations ) { MotionTransformPoint motionFit = FitSpecialEuclideanOps_F64.fitPoints3D(); return switch (which) { case P3P_GRUNERT -> { P3PGrunert grunert = new P3PGrunert(PolynomialOps.createRootFinder(5, RootFinderType.STURM)); yield new WrapP3PLineDistance(grunert, motionFit); } case P3P_FINSTERWALDER -> { P3PFinsterwalder finster = new P3PFinsterwalder(PolynomialOps.createRootFinder(4, RootFinderType.STURM)); yield new WrapP3PLineDistance(finster, motionFit); } case EPNP -> new Estimate1toNofPnP(pnp_1(which, numIterations, 0)); case IPPE -> new Estimate1toNofPnP(new IPPE_to_EstimatePnP(FactoryMultiView.homographyTLS())); }; } /** * Created an estimator for the P3P problem that selects a single solution by considering additional * observations. * *

NOTE: Observations are in normalized image coordinates NOT pixels.

* *

* NOTE: EPnP has several tuning parameters and the defaults here might not be the best for your situation. * Use {@link #computePnPwithEPnP} if you wish to have access to all parameters. *

* * @param which The algorithm which is to be returned. * @param numIterations Number of iterations. Only used by some algorithms and recommended number varies * significantly by algorithm. * @param numTest How many additional sample points are used to remove ambiguity in the solutions. Not used * if only a single solution is found. * @return An estimator which returns a single estimate. */ public static Estimate1ofPnP pnp_1( EnumPNP which, int numIterations, int numTest ) { if (which == EnumPNP.EPNP) { PnPLepetitEPnP alg = new PnPLepetitEPnP(0.1); alg.setNumIterations(numIterations); return new WrapPnPLepetitEPnP(alg); } else if (which == EnumPNP.IPPE) { Estimate1ofEpipolar H = FactoryMultiView.homographyTLS(); return new IPPE_to_EstimatePnP(H); } DogArray solutions = new DogArray<>(4, Se3_F64::new); return new EstimateNto1ofPnP(pnp_N(which, -1), solutions, numTest); } /** * Projective N Point. This is PnP for uncalibrated cameras. Please read algorithms documentation for * limitations * * @return Estimator * @see PRnPDirectLinearTransform */ public static Estimate1ofPrNP prnp_1() { return new WrapPRnPDirectLinearTransform(new PRnPDirectLinearTransform()); } /** * Returns a solution to the PnP problem for 4 or more points using EPnP. Fast and fairly * accurate algorithm. Can handle general and planar scenario automatically. * *

NOTE: Observations are in normalized image coordinates NOT pixels.

* * @param numIterations If more then zero then non-linear optimization is done. More is not always better. Try 10 * @param magicNumber Affects how the problem is linearized. See comments in {@link PnPLepetitEPnP}. Try 0.1 * @return Estimate1ofPnP * @see PnPLepetitEPnP */ public static Estimate1ofPnP computePnPwithEPnP( int numIterations, double magicNumber ) { PnPLepetitEPnP alg = new PnPLepetitEPnP(magicNumber); alg.setNumIterations(numIterations); return new WrapPnPLepetitEPnP(alg); } /** * Refines a pose solution to the PnP problem using non-linear least squares.. * * @param tol Convergence tolerance. Try 1e-8 * @param maxIterations Maximum number of iterations. Try 200 */ public static RefinePnP pnpRefine( double tol, int maxIterations ) { return new PnPRefineRodrigues(tol, maxIterations); } /** * Estimate the camera motion give two observations and the 3D world coordinate of each points. * * @return PoseFromPairLinear6 */ public static PoseFromPairLinear6 poseFromPair() { return new PoseFromPairLinear6(); } /** * Triangulate two view using the Discrete Linear Transform (DLT) with a calibrated camera. * * @return Two view triangulation algorithm * @see Wrap2ViewPixelDepthLinear * @see TriangulateMetricLinearDLT */ public static Triangulate2ViewsMetric triangulate2ViewMetric( @Nullable ConfigTriangulation config ) { if (config == null) config = new ConfigTriangulation(); return switch (config.type) { case DLT -> new Wrap2ViewPixelDepthLinear(); case GEOMETRIC -> new Wrap2ViewsTriangulateGeometric(); default -> throw new IllegalArgumentException("Unknown or unsupported type " + config.type); }; } /** * Triangulate two view using the Discrete Linear Transform (DLT) with a calibrated camera. * * @return Two view triangulation algorithm * @see TriangulateMetricLinearDLT * @see Triangulate2ViewsGeometricMetric */ public static Triangulate2ViewsMetricH triangulate2ViewMetricH( @Nullable ConfigTriangulation config ) { if (config == null) config = new ConfigTriangulation(); return switch (config.type) { case DLT -> new Wrap2ViewsTriangulateMetricDLTH(); case GEOMETRIC -> new Wrap2ViewsTriangulateGeometricH(); default -> throw new IllegalArgumentException("Unknown or unsupported type " + config.type); }; } /** * Triangulate two view using the Discrete Linear Transform (DLT) with an uncalibrated camera. * * @return Two view triangulation algorithm * @see TriangulateProjectiveLinearDLT */ public static Triangulate2ViewsProjective triangulate2ViewProjective( @Nullable ConfigTriangulation config ) { if (config == null) config = new ConfigTriangulation(); if (config.type == ConfigTriangulation.Type.DLT) { return new Wrap2ViewsTriangulateProjectiveDLT(); } throw new IllegalArgumentException("Unknown or unsupported type " + config.type); } /** * Triangulate N views using the Discrete Linear Transform (DLT) with a calibrated camera * * @return N-view triangulation algorithm * @see TriangulateMetricLinearDLT */ public static TriangulateNViewsMetric triangulateNViewMetric( @Nullable ConfigTriangulation config ) { if (config == null) config = new ConfigTriangulation(); return switch (config.type) { case DLT -> new WrapNViewsTriangulateMetricDLT(); case GEOMETRIC -> { TriangulateNViewsMetric estimator = new WrapNViewsTriangulateMetricDLT(); TriangulateRefineMetricLS refiner = new TriangulateRefineMetricLS(config.converge.gtol, config.converge.maxIterations); yield new TriangulateThenRefineMetric(estimator, refiner); } default -> throw new IllegalArgumentException("Unknown or unsupported type " + config.type); }; } /** * Triangulate a homogenous point from N metric views given observations in normalized image coordinates. * * @return N-view triangulation algorithm * @see TriangulateMetricLinearDLT */ public static TriangulateNViewsMetricH triangulateNViewMetricH( @Nullable ConfigTriangulation config ) { if (config == null) config = new ConfigTriangulation(); return switch (config.type) { case DLT -> new WrapNViewsTriangulateMetricHgDLT(); case GEOMETRIC -> { var estimator = new WrapNViewsTriangulateMetricHgDLT(); var refiner = new TriangulateRefineMetricHgLS(config.converge.gtol, config.converge.maxIterations); yield new TriangulateThenRefineMetricH(estimator, refiner); } default -> throw new IllegalArgumentException("Unknown or unsupported type " + config.type); }; } /** * Triangulate a homogenous point from N projective views given observations in pixel coordinates. * * @return N-view triangulation algorithm * @see TriangulateProjectiveLinearDLT */ public static TriangulateNViewsProjective triangulateNViewProj( @Nullable ConfigTriangulation config ) { if (config == null) config = new ConfigTriangulation(); return switch (config.type) { case DLT -> new WrapNViewsTriangulateProjectiveDLT(); case ALGEBRAIC, GEOMETRIC -> { var estimator = new WrapNViewsTriangulateProjectiveDLT(); var refiner = new TriangulateRefineProjectiveLS(config.converge.gtol, config.converge.maxIterations); yield new TriangulateThenRefineProjective(estimator, refiner); } default -> throw new IllegalArgumentException("Unknown or unsupported type " + config.type); }; } /** * Triangulate a point in homogeneous coordinates using two pointing vector observations. * * @return Two view triangulation algorithm * @see TriangulateMetricLinearDLT * @see Triangulate2ViewsGeometricMetric */ public static Triangulate2PointingMetricH triangulate2PointingMetricH( @Nullable ConfigTriangulation config ) { if (config == null) config = new ConfigTriangulation(); return switch (config.type) { case DLT -> new Wrap2PointingTriangulateMetricDLTH(); case GEOMETRIC -> new Wrap2PointingTriangulateGeometricH(); default -> throw new IllegalArgumentException("Unknown or unsupported type " + config.type); }; } /** * Triangulate a point in homogenous coordinates from N views given observations as pointing vectors. * * @return N-view triangulation algorithm * @see TriangulateMetricLinearDLT */ public static TriangulateNPointingMetricH triangulateNPointingMetricH( @Nullable ConfigTriangulation config ) { if (config == null) config = new ConfigTriangulation(); return switch (config.type) { case DLT -> new WrapNPointingTriangulateMetricHgDLT(); // case GEOMETRIC -> { // var estimator = new WrapNPointingTriangulateMetricHgDLT(); // var refiner = new TriangulateRefineMetricHgLS(config.converge.gtol, config.converge.maxIterations); // yield new TriangulateThenRefineMetricH(estimator, refiner); // } default -> throw new IllegalArgumentException("Unknown or unsupported type " + config.type); }; } /** * Refine the triangulation using Sampson error. Approximately takes in account epipolar constraints. * * @param config Convergence criteria * @return Triangulation refinement algorithm. * @see ResidualsTriangulateEpipolarSampson */ public static RefineTriangulateEpipolar triangulateRefineEpipolar( ConfigConverge config ) { return new TriangulateRefineEpipolarLS(config.gtol, config.maxIterations); } /** * Refine the triangulation by computing the difference between predicted and actual pixel location. * Does not take in account epipolar constraints. * * @param config Convergence criteria * @return Triangulation refinement algorithm. * @see ResidualsTriangulateMetricSimple */ public static RefineTriangulateMetric triangulateRefineMetric( ConfigConverge config ) { return new TriangulateRefineMetricLS(config.gtol, config.maxIterations); } /** * Refine the triangulation by computing the difference between predicted and actual pixel location. * Does not take in account epipolar constraints. * * @param config Convergence criteria * @return Triangulation refinement algorithm. * @see TriangulateRefineMetricHgLS */ public static RefineTriangulateMetricH triangulateRefineMetricH( ConfigConverge config ) { return new TriangulateRefineMetricHgLS(config.gtol, config.maxIterations); } /** * Refines a projective triangulation * * @param config Convergence criteria * @return Triangulation refinement algorithm. * @see ResidualsTriangulateProjective */ public static RefineTriangulateProjective triangulateRefineProj( ConfigConverge config ) { return new TriangulateRefineProjectiveLS(config.gtol, config.maxIterations); } /** * Three-view self calibration based on various methods. Read documentation carefully since partially known * calibration is the norm and often the principle point needs to be zero. * * @param config (Input) Configuration for metric elevation. Can be null. * @return ModelGenerator */ public static ModelGeneratorViews selfCalibThree( @Nullable ConfigPixelsToMetric config ) { if (config == null) config = new ConfigPixelsToMetric(); config.checkValidity(); Estimate1ofTrifocalTensor trifocal = trifocal_1(config.trifocal); ProjectiveToMetricCameras selfcalib = switch (config.type) { case DUAL_QUADRATIC -> projectiveToMetric(config.dualQuadratic); case ESSENTIAL_GUESS -> projectiveToMetric(config.essentialGuess); case PRACTICAL_GUESS -> projectiveToMetric(config.practicalGuess); }; return new GenerateMetricTripleFromProjective(trifocal, selfcalib); } /** * {@link ProjectiveToMetricCameras} based upon {@link SelfCalibrationLinearDualQuadratic} * * @param config (Input) Configuration. Can be null. * @return {@link ProjectiveToMetricCameras} */ public static ProjectiveToMetricCameras projectiveToMetric( @Nullable ConfigSelfCalibDualQuadratic config ) { if (config == null) config = new ConfigSelfCalibDualQuadratic(); config.checkValidity(); final ConfigSelfCalibDualQuadratic c = config; var selfCalib = c.knownAspectRatio ? // lint:forbidden ignore_line new SelfCalibrationLinearDualQuadratic(c.aspectRatio) : new SelfCalibrationLinearDualQuadratic(c.zeroSkew); var ret = new ProjectiveToMetricCameraDualQuadratic(selfCalib); ret.invalidFractionAccept = c.invalidFractionAccept; ret.getRefiner().converge.setTo(c.refineAlgebraic); return ret; } /** * {@link ProjectiveToMetricCameras} based upon {@link SelfCalibrationEssentialGuessAndCheck} * * @param config (Input) Configuration. Can be null. * @return {@link ProjectiveToMetricCameras} */ public static ProjectiveToMetricCameras projectiveToMetric( @Nullable ConfigSelfCalibEssentialGuess config ) { if (config == null) config = new ConfigSelfCalibEssentialGuess(); config.checkValidity(); final ConfigSelfCalibEssentialGuess c = config; var selfCalib = new SelfCalibrationEssentialGuessAndCheck(); selfCalib.fixedFocus = c.fixedFocus; selfCalib.numberOfSamples = c.numberOfSamples; selfCalib.sampleFocalRatioMin = c.sampleMin; selfCalib.sampleFocalRatioMax = c.sampleMax; return new ProjectiveToMetricCameraEssentialGuessAndCheck(selfCalib); } /** * {@link ProjectiveToMetricCameras} based upon {@link SelfCalibrationPraticalGuessAndCheckFocus} * * @param config (Input) Configuration. Can be null. * @return {@link ProjectiveToMetricCameras} */ public static ProjectiveToMetricCameras projectiveToMetric( @Nullable ConfigSelfCalibPracticalGuess config ) { if (config == null) config = new ConfigSelfCalibPracticalGuess(); config.checkValidity(); final ConfigSelfCalibPracticalGuess c = config; var selfCalib = new SelfCalibrationPraticalGuessAndCheckFocus(); selfCalib.setSampling(c.sampleMin, c.sampleMax, c.numberOfSamples); selfCalib.setSingleCamera(c.fixedFocus); return new ProjectiveToMetricCameraPracticalGuessAndCheck(selfCalib); } /** * Returns {@link RefineDualQuadraticAlgebraicError} which can be used to minimize the Dual Quadratic * by minimizing algebraic error. * * @param config Converge criteria */ public static RefineDualQuadraticAlgebraicError refineDualAbsoluteQuadratic( ConfigConverge config ) { var alg = new RefineDualQuadraticAlgebraicError(); alg.getConverge().setTo(config); return alg; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy