All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.factory.geo.FactoryMultiViewRobust Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2022, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.factory.geo;

import boofcv.abst.geo.*;
import boofcv.abst.geo.fitting.DistanceFromModelResidual;
import boofcv.abst.geo.fitting.GenerateEpipolarMatrix;
import boofcv.abst.geo.fitting.ModelManagerEpipolarMatrix;
import boofcv.alg.geo.f.FundamentalResidualSampson;
import boofcv.alg.geo.pose.PnPDistanceReprojectionSq;
import boofcv.alg.geo.robust.*;
import boofcv.alg.geo.selfcalib.DistanceMetricTripleReprojection23;
import boofcv.alg.geo.selfcalib.MetricCameraTriple;
import boofcv.alg.geo.selfcalib.ModelManagerMetricCameraTriple;
import boofcv.concurrency.BoofConcurrency;
import boofcv.struct.calib.ElevateViewInfo;
import boofcv.struct.geo.*;
import georegression.fitting.homography.ModelManagerHomography2D_F64;
import georegression.fitting.se.ModelManagerSe3_F64;
import georegression.struct.homography.Homography2D_F64;
import georegression.struct.se.Se3_F64;
import org.ddogleg.fitting.modelset.DistanceFromModel;
import org.ddogleg.fitting.modelset.ModelManager;
import org.ddogleg.fitting.modelset.ModelMatcher;
import org.ddogleg.fitting.modelset.lmeds.LeastMedianOfSquares;
import org.ddogleg.fitting.modelset.lmeds.LeastMedianOfSquares_MT;
import org.ddogleg.fitting.modelset.ransac.Ransac;
import org.ddogleg.fitting.modelset.ransac.Ransac_MT;
import org.ddogleg.struct.Factory;
import org.ejml.data.DMatrixRMaj;
import org.jetbrains.annotations.Nullable;

/**
 * Factory for creating robust false-positive tolerant estimation algorithms in multi-view geometry. These
 * algorithms tend to have a lot of boilerplate associated with them and the goal of this factory
 * is to make their use much easier and less error prone.
 *
 * @author Peter Abeles
 */
public class FactoryMultiViewRobust {

	/**
	 * Robust solution to PnP problem using {@link LeastMedianOfSquares LMedS}. Input observations are
	 * in normalized image coordinates.
	 *
	 * 
    *
  • Input observations are in normalized image coordinates NOT pixels
  • *
  • Error units are pixels squared.
  • *
* *

See code for all the details.

* * @param configPnP PnP parameters. Can't be null. * @param configLMedS Parameters for LMedS. Can't be null. * @return Robust Se3_F64 estimator */ public static ModelMatcherMultiview pnpLMedS( @Nullable ConfigPnP configPnP, ConfigLMedS configLMedS ) { if (configPnP == null) configPnP = new ConfigPnP(); configPnP.checkValidity(); configLMedS.checkValidity(); var manager = new ModelManagerSe3_F64(); var lmeds = new LeastMedianOfSquaresCalibrated<>(createLMEDS(configLMedS, manager, Point2D3D.class)); lmeds.getFitter().setErrorFraction(configLMedS.errorFraction); ConfigPnP _configPnP = configPnP; lmeds.setModel(() -> { Estimate1ofPnP estimatorPnP = FactoryMultiView.pnp_1( _configPnP.which, _configPnP.epnpIterations, _configPnP.numResolve); return new EstimatorToGenerator<>(estimatorPnP); }, PnPDistanceReprojectionSq::new); return lmeds; } /** * Robust solution to PnP problem using {@link Ransac}. Input observations are in normalized * image coordinates. Found transform is from world to camera. * *

NOTE: Observations are in normalized image coordinates NOT pixels.

* *

See code for all the details.

* * @param configPnP PnP parameters. Can't be null. * @param configRansac Parameters for RANSAC. Can't be null. * @return Robust Se3_F64 estimator * @see Estimate1ofPnP */ public static RansacCalibrated pnpRansac( @Nullable ConfigPnP configPnP, ConfigRansac configRansac ) { if (configPnP == null) configPnP = new ConfigPnP(); configPnP.checkValidity(); configRansac.checkValidity(); // convert from pixels to pixels squared double threshold = configRansac.inlierThreshold*configRansac.inlierThreshold; var ransac = new RansacCalibrated<>(createRansac( configRansac, threshold, new ModelManagerSe3_F64(), Point2D3D.class)); ConfigPnP _configPnP = configPnP; ransac.setModel(() -> { Estimate1ofPnP estimatorPnP = FactoryMultiView.pnp_1( _configPnP.which, _configPnP.epnpIterations, _configPnP.numResolve); return new EstimatorToGenerator<>(estimatorPnP); }, PnPDistanceReprojectionSq::new); return ransac; } /** * Robust solution for estimating {@link Se3_F64} using epipolar geometry from two views with * {@link LeastMedianOfSquares LMedS}. Input observations are in normalized image coordinates. * *
    *
  • Error units is pixels squared times two
  • *
* *

See code for all the details.

* * @param configEssential Essential matrix estimation parameters. Can't be null. * @param configLMedS Parameters for RANSAC. Can't be null. * @return Robust Se3_F64 estimator */ public static ModelMatcherMultiview baselineLMedS( @Nullable ConfigEssential configEssential, ConfigLMedS configLMedS ) { if (configEssential == null) configEssential = new ConfigEssential(); configEssential.checkValidity(); configLMedS.checkValidity(); var manager = new ModelManagerSe3_F64(); var lmeds = new LeastMedianOfSquaresCalibrated<>(createLMEDS(configLMedS, manager, AssociatedPair.class)); lmeds.getFitter().setErrorFraction(configLMedS.errorFraction); ConfigEssential _configEssential = configEssential; lmeds.setModel(() -> { Estimate1ofEpipolar epipolar = FactoryMultiView. essential_1(_configEssential.which, _configEssential.numResolve); Triangulate2ViewsMetricH triangulate = FactoryMultiView.triangulate2ViewMetricH( new ConfigTriangulation(ConfigTriangulation.Type.GEOMETRIC)); return new Se3FromEssentialGenerator(epipolar, triangulate); }, () -> { Triangulate2ViewsMetricH triangulate = FactoryMultiView.triangulate2ViewMetricH( new ConfigTriangulation(ConfigTriangulation.Type.GEOMETRIC)); return new DistanceSe3SymmetricSq(triangulate); }); return lmeds; } public static ModelMatcher fundamentalLMedS( @Nullable ConfigFundamental configFundamental, ConfigLMedS configLMedS ) { if (configFundamental == null) configFundamental = new ConfigFundamental(); configFundamental.checkValidity(); configLMedS.checkValidity(); ConfigFundamental _configFundamental = configFundamental; var manager = new ModelManagerEpipolarMatrix(); LeastMedianOfSquares alg = createLMEDS(configLMedS, manager, AssociatedPair.class); alg.setModel( () -> { Estimate1ofEpipolar estimateF = FactoryMultiView.fundamental_1(_configFundamental.which, _configFundamental.numResolve); return new GenerateEpipolarMatrix(estimateF); }, () -> switch (_configFundamental.errorModel) { case SAMPSON -> new DistanceFromModelResidual<>(new FundamentalResidualSampson()); case GEOMETRIC -> new DistanceFundamentalGeometric(); }); return alg; } /** * Robust solution for estimating the stereo baseline {@link Se3_F64} using epipolar geometry from two views with * {@link RansacCalibrated}. Input observations are in normalized image coordinates. * *

See code for all the details.

* * @param configEssential Essential matrix estimation parameters. * @param configRansac Parameters for RANSAC. Can't be null. * @return Robust Se3_F64 estimator */ public static RansacCalibrated baselineRansac( @Nullable ConfigEssential configEssential, ConfigRansac configRansac ) { if (configEssential == null) configEssential = new ConfigEssential(); configEssential.checkValidity(); configRansac.checkValidity(); if (configEssential.errorModel != ConfigEssential.ErrorModel.GEOMETRIC) { throw new RuntimeException("Error model has to be Euclidean"); } ConfigEssential _configEssential = configEssential; double ransacTOL = configRansac.inlierThreshold*configRansac.inlierThreshold*2.0; var ransac = new RansacCalibrated<>(createRansac( configRansac, ransacTOL, new ModelManagerSe3_F64(), AssociatedPair.class)); ransac.setModel(() -> { Estimate1ofEpipolar epipolar = FactoryMultiView. essential_1(_configEssential.which, _configEssential.numResolve); Triangulate2ViewsMetricH triangulate = FactoryMultiView.triangulate2ViewMetricH( new ConfigTriangulation(ConfigTriangulation.Type.GEOMETRIC)); return new Se3FromEssentialGenerator(epipolar, triangulate); }, () -> { Triangulate2ViewsMetricH triangulate = FactoryMultiView.triangulate2ViewMetricH( new ConfigTriangulation(ConfigTriangulation.Type.GEOMETRIC)); return new DistanceSe3SymmetricSq(triangulate); }); return ransac; } /** * Robust solution for estimating the stereo baseline {@link Se3_F64} using epipolar geometry from two views with * {@link RansacCalibrated2}. Input observations are in pointing vector coordinates. * *

See code for all the details.

* * @param configEssential Essential matrix estimation parameters. * @param configRansac Parameters for RANSAC. Can't be null. * @return Robust Se3_F64 estimator */ public static RansacCalibrated2 baselinePointingRansac( @Nullable ConfigEssential configEssential, ConfigRansac configRansac ) { if (configEssential == null) configEssential = new ConfigEssential(); configEssential.checkValidity(); configRansac.checkValidity(); if (configEssential.errorModel != ConfigEssential.ErrorModel.GEOMETRIC) { throw new RuntimeException("Error model has to be Euclidean"); } Estimate1ofEpipolarPointing epipolar = FactoryMultiView. essentialPointing_1(configEssential.which, configEssential.numResolve); Triangulate2PointingMetricH triangulate = FactoryMultiView.triangulate2PointingMetricH( new ConfigTriangulation(ConfigTriangulation.Type.GEOMETRIC)); var manager = new ModelManagerSe3_F64(); var generateEpipolarMotion = new Se3FromEssentialPointingGenerator(epipolar, triangulate); var distanceSe3 = new DistanceSe3SymmetricSqPointing(triangulate); double ransacTOL = configRansac.inlierThreshold*configRansac.inlierThreshold*2.0; return new RansacCalibrated2<>(configRansac.randSeed, configRansac.iterations, ransacTOL, manager, generateEpipolarMotion, distanceSe3); } /** * Estimates the essential matrix given associated image features in normalized image coordinates using RANSAC. * * @param configEssential (Optional) Configuration for computing essential matrix * @param configRansac Configuration for RANSAC * @return Robust essential matrix estimator */ public static ModelMatcherMultiview essentialRansac( @Nullable ConfigEssential configEssential, ConfigRansac configRansac ) { if (configEssential == null) configEssential = new ConfigEssential(); configEssential.checkValidity(); configRansac.checkValidity(); if (configEssential.errorModel == ConfigEssential.ErrorModel.GEOMETRIC) { // The best error has been selected. Compute using the baseline algorithm then convert back into // essential matrix return new MmmvSe3ToEssential(baselineRansac(configEssential, configRansac)); } double ransacTOL = configRansac.inlierThreshold*configRansac.inlierThreshold; RansacCalibrated ransac = new RansacCalibrated(createRansac( configRansac, ransacTOL, new ModelManagerEpipolarMatrix(), AssociatedPair.class)); ConfigEssential _configEssential = configEssential; ransac.setModel(() -> { Estimate1ofEpipolar estimateF = FactoryMultiView.essential_1(_configEssential.which, _configEssential.numResolve); return new GenerateEpipolarMatrix(estimateF); }, DistanceMultiView_EssentialSampson::new); return ransac; } public static ModelMatcher fundamentalRansac( ConfigFundamental configFundamental, ConfigRansac configRansac ) { configFundamental.checkValidity(); configRansac.checkValidity(); ModelManager manager = new ModelManagerEpipolarMatrix(); double ransacTol = configRansac.inlierThreshold*configRansac.inlierThreshold; Ransac ransac = createRansac(configRansac, ransacTol, manager, AssociatedPair.class); ransac.setModel( () -> { Estimate1ofEpipolar estimateF = FactoryMultiView.fundamental_1(configFundamental.which, configFundamental.numResolve); return new GenerateEpipolarMatrix(estimateF); }, () -> switch (configFundamental.errorModel) { case SAMPSON -> new DistanceFromModelResidual<>(new FundamentalResidualSampson()); case GEOMETRIC -> new DistanceFundamentalGeometric(); }); return ransac; } /** * Robust solution for estimating {@link Homography2D_F64} with {@link LeastMedianOfSquares LMedS}. Input * observations are in pixel coordinates. * *
    *
  • Four point linear is used internally

    *
  • inlierThreshold is in pixels

    *
* *

See code for all the details.

* * @param configHomography Homography estimation parameters. If null default is used. * @param configLMedS Parameters for LMedS. Can't be null. * @return Homography estimator */ public static LeastMedianOfSquares homographyLMedS( @Nullable ConfigHomography configHomography, ConfigLMedS configLMedS ) { if (configHomography == null) configHomography = new ConfigHomography(); configHomography.checkValidity(); configLMedS.checkValidity(); ConfigHomography _configHomography = configHomography; var manager = new ModelManagerHomography2D_F64(); LeastMedianOfSquares lmeds = createLMEDS(configLMedS, manager, AssociatedPair.class); lmeds.setModel( () -> new GenerateHomographyLinear(_configHomography.normalize), DistanceHomographySq::new); return lmeds; } /** * Robust solution for estimating {@link Homography2D_F64} with {@link Ransac}. Input * observations are in pixel coordinates. * *
    *
  • Four point linear is used internally

    *
  • inlierThreshold is in pixels

    *
* *

See code for all the details.

* * @param configHomography Homography estimation parameters. If null default is used. * @param configRansac Parameters for RANSAC. Can't be null. * @return Homography estimator */ public static Ransac homographyRansac( @Nullable ConfigHomography configHomography, ConfigRansac configRansac ) { if (configHomography == null) configHomography = new ConfigHomography(); configHomography.checkValidity(); configRansac.checkValidity(); ConfigHomography _configHomography = configHomography; ModelManager manager = new ModelManagerHomography2D_F64(); double ransacTol = configRansac.inlierThreshold*configRansac.inlierThreshold; Ransac ransac = createRansac(configRansac, ransacTol, manager, AssociatedPair.class); ransac.setModel( () -> new GenerateHomographyLinear(_configHomography.normalize), DistanceHomographySq::new); return ransac; } /** * Estimates a homography from normalized image coordinates but computes the error in pixel coordinates * * @param configRansac RANSAC configuration * @return Ransac * @see GenerateHomographyLinear * @see DistanceHomographyCalibratedSq */ public static RansacCalibrated homographyCalibratedRansac( ConfigRansac configRansac ) { configRansac.checkValidity(); double ransacTol = configRansac.inlierThreshold*configRansac.inlierThreshold; var ransac = new RansacCalibrated<>(createRansac( configRansac, ransacTol, new ModelManagerHomography2D_F64(), AssociatedPair.class)); ransac.setModel(() -> new GenerateHomographyLinear(false), DistanceHomographyCalibratedSq::new); return ransac; } /** * Robust RANSAC based estimator for * * @param configTrifocal Configuration for trifocal tensor calculation * @param configError Configuration for how trifocal error is computed * @param configRansac Configuration for RANSAC * @return RANSAC * @see FactoryMultiView#trifocal_1 */ public static Ransac trifocalRansac( @Nullable ConfigTrifocal configTrifocal, @Nullable ConfigTrifocalError configError, ConfigRansac configRansac ) { if (configTrifocal == null) configTrifocal = new ConfigTrifocal(); if (configError == null) configError = new ConfigTrifocalError(); configTrifocal.checkValidity(); configError.checkValidity(); configRansac.checkValidity(); // needed for lambdas final ConfigTrifocal _configTrifocal = configTrifocal; final ConfigTrifocalError _configError = configError; double ransacTol; Factory> distance; switch (configError.model) { case REPROJECTION -> { ransacTol = 3.0*configRansac.inlierThreshold*configRansac.inlierThreshold; distance = DistanceTrifocalReprojectionSq::new; } case REPROJECTION_REFINE -> { ransacTol = 3.0*configRansac.inlierThreshold*configRansac.inlierThreshold; distance = () -> new DistanceTrifocalReprojectionSq( _configError.converge.gtol, _configError.converge.maxIterations); } case POINT_TRANSFER -> { ransacTol = 2.0*configRansac.inlierThreshold*configRansac.inlierThreshold; distance = DistanceTrifocalTransferSq::new; } default -> throw new IllegalArgumentException("Unknown error model " + configError.model); } ModelManager manager = new ManagerTrifocalTensor(); Ransac ransac = createRansac(configRansac, ransacTol, manager, AssociatedTriple.class); ransac.setModel( () -> new GenerateTrifocalTensor(FactoryMultiView.trifocal_1(_configTrifocal)), distance); return ransac; } /** * Projective to metric self calibration from 3-views * * @param configSelfcalib (Input) configuration for self calibration * @param configRansac (Input) configuration for RANSAC * @return RANSAC */ public static RansacProjective metricThreeViewRansac( @Nullable ConfigPixelsToMetric configSelfcalib, ConfigRansac configRansac ) { configRansac.checkValidity(); // Pixel error squared in two views double ransacTol = configRansac.inlierThreshold*configRansac.inlierThreshold*2; // lint:forbidden ignore_below 1 var generator = FactoryMultiView.selfCalibThree(configSelfcalib); var manager = new ModelManagerMetricCameraTriple(); var distance = new DistanceFromModelIntoViews (new DistanceMetricTripleReprojection23(), 3); return new RansacProjective<>(configRansac.randSeed, manager, generator, distance, configRansac.iterations, ransacTol); } public static LeastMedianOfSquaresProjective metricThreeViewLmeds( @Nullable ConfigPixelsToMetric configSelfcalib, ConfigLMedS configLMedS ) { configLMedS.checkValidity(); // lint:forbidden ignore_below 1 var generator = FactoryMultiView.selfCalibThree(configSelfcalib); var manager = new ModelManagerMetricCameraTriple(); var distance = new DistanceFromModelIntoViews (new DistanceMetricTripleReprojection23(), 3); return new LeastMedianOfSquaresProjective<>(configLMedS.randSeed, configLMedS.totalCycles, Double.MAX_VALUE, configLMedS.errorFraction, manager, generator, distance); } public static LeastMedianOfSquares createLMEDS( ConfigLMedS configLMedS, ModelManager manager, Class pointType ) { LeastMedianOfSquares alg = BoofConcurrency.isUseConcurrent() ? new LeastMedianOfSquares_MT<>(configLMedS.randSeed, configLMedS.totalCycles, manager, pointType) : new LeastMedianOfSquares<>(configLMedS.randSeed, configLMedS.totalCycles, manager, pointType); alg.setErrorFraction(configLMedS.errorFraction); return alg; } /** * Returns a new instance of RANSAC. If concurrency is turned on then a concurrent version will be returned. * * @param ransacTol inlier tolerance. The tolerance on config isn't used since that might have the wrong units. This * lets the user easily adjust the units without modifying the config. */ public static Ransac createRansac( ConfigRansac configRansac, double ransacTol, ModelManager manager, Class pointType ) { return BoofConcurrency.isUseConcurrent() ? new Ransac_MT<>(configRansac.randSeed, configRansac.iterations, ransacTol, manager, pointType) : new Ransac<>(configRansac.randSeed, configRansac.iterations, ransacTol, manager, pointType); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy