boofcv.alg.disparity.block.SparseScoreRectifiedCensus Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-ip-multiview Show documentation
Show all versions of boofcv-ip-multiview Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2022, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.disparity.block;
import boofcv.abst.transform.census.FilterCensusTransform;
import boofcv.alg.descriptor.DescriptorDistance;
import boofcv.alg.disparity.block.score.DisparitySparseRectifiedScoreBM_S32;
import boofcv.struct.image.*;
/**
* Disparity score functions for sparse Census.
*
* WARNING: This will not produce identical results to the dense implementation at the image border. In the
* dense implementation it computes the Census transform for the entire image. Then when it computes the block
* score it ventures outside the image again and by default will reflect while in the sparse case it uses
* a padded sub image and will not trigger a border situation. To fix this problem would require a lot of
* complex specialized code and would most likely not produce significantly better results.
*
* @author Peter Abeles
*/
public interface SparseScoreRectifiedCensus {
/**
* Applies a census transform to the input image and creates a new transformed image patch for later processing
*/
abstract class Census, Out extends ImageGray>
extends DisparitySparseRectifiedScoreBM_S32 {
// Applies census transform to input iamges
FilterCensusTransform censusTran;
// census transform applied to left and right image patches
Out censusLeft, censusRight;
protected Census( int radiusX, int radiusY, FilterCensusTransform censusTran, Class imageType ) {
super(radiusX, radiusY, imageType);
this.censusTran = censusTran;
setSampleRegion(censusTran.getRadiusX(), censusTran.getRadiusY());
censusLeft = censusTran.getOutputType().createImage(1, 1);
censusRight = censusTran.getOutputType().createImage(1, 1);
}
@Override
public void configure( int disparityMin, int disparityRange ) {
super.configure(disparityMin, disparityRange);
censusLeft.reshape(patchTemplate);
}
@Override
protected void scoreDisparity( int disparityRange, final boolean leftToRight ) {
censusRight.reshape(patchCompare);
// NOTE: the borders do not need to be processed
censusTran.process(patchTemplate, censusLeft);
censusTran.process(patchCompare, censusRight);
scoreCensus(disparityRange, leftToRight);
}
protected abstract void scoreCensus( int disparityRange, final boolean leftToRight );
}
/**
* Computes census score for transformed images of type U8
*/
class U8> extends Census {
public U8( int radiusX, int radiusY,
FilterCensusTransform censusTran,
Class imageType ) {
super(radiusX, radiusY, censusTran, imageType);
}
@Override
protected void scoreCensus( int disparityRange, final boolean leftToRight ) {
final int[] scores = leftToRight ? scoreLtoR : scoreRtoL;
final byte[] dataLeft = censusLeft.data;
final byte[] dataRight = censusRight.data;
for (int d = 0; d < disparityRange; d++) {
int total = 0;
for (int y = 0; y < blockHeight; y++) {
int idxLeft = (y + sampleRadiusY)*censusLeft.stride + sampleRadiusX;
int idxRight = (y + sampleRadiusY)*censusRight.stride + sampleRadiusX + d;
for (int x = 0; x < blockWidth; x++) {
final int a = dataLeft[idxLeft++] & 0xFF;
final int b = dataRight[idxRight++] & 0xFF;
total += DescriptorDistance.hamming(a ^ b);
}
}
int index = leftToRight ? disparityRange - d - 1 : d;
scores[index] = total;
}
}
}
/**
* Computes census score for transformed images of type S32
*/
class S32> extends Census {
public S32( int radiusX, int radiusY,
FilterCensusTransform censusTran,
Class imageType ) {
super(radiusX, radiusY, censusTran, imageType);
}
@Override
protected void scoreCensus( int disparityRange, final boolean leftToRight ) {
final int[] scores = leftToRight ? scoreLtoR : scoreRtoL;
final int[] dataLeft = censusLeft.data;
final int[] dataRight = censusRight.data;
for (int d = 0; d < disparityRange; d++) {
int total = 0;
for (int y = 0; y < blockHeight; y++) {
int idxLeft = (y + sampleRadiusY)*censusLeft.stride + sampleRadiusX;
int idxRight = (y + sampleRadiusY)*censusRight.stride + sampleRadiusX + d;
for (int x = 0; x < blockWidth; x++) {
final int a = dataLeft[idxLeft++];
final int b = dataRight[idxRight++];
total += DescriptorDistance.hamming(a ^ b);
}
}
int index = leftToRight ? disparityRange - d - 1 : d;
scores[index] = total;
}
}
}
/**
* Computes census score for transformed images of type S64
*/
class S64> extends Census {
public S64( int radiusX, int radiusY,
FilterCensusTransform censusTran,
Class imageType ) {
super(radiusX, radiusY, censusTran, imageType);
}
@Override
protected void scoreCensus( int disparityRange, final boolean leftToRight ) {
final int[] scores = leftToRight ? scoreLtoR : scoreRtoL;
final long[] dataLeft = censusLeft.data;
final long[] dataRight = censusRight.data;
for (int d = 0; d < disparityRange; d++) {
int total = 0;
for (int y = 0; y < blockHeight; y++) {
int idxLeft = (y + sampleRadiusY)*censusLeft.stride + sampleRadiusX;
int idxRight = (y + sampleRadiusY)*censusRight.stride + sampleRadiusX + d;
for (int x = 0; x < blockWidth; x++) {
final long a = dataLeft[idxLeft++];
final long b = dataRight[idxRight++];
total += DescriptorDistance.hamming(a ^ b);
}
}
int index = leftToRight ? disparityRange - d - 1 : d;
scores[index] = total;
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy