All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.disparity.block.select.SelectSparseErrorSubpixel Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2023, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.disparity.block.select;

import boofcv.alg.disparity.block.score.DisparitySparseRectifiedScoreBM;

/**
 * 

* Subpixel accuracy for disparity. See {@link SelectErrorSubpixel} for more details on the * mathematics. *

* * @author Peter Abeles */ public class SelectSparseErrorSubpixel { public static class S32 extends SelectSparseErrorWithChecksWta_S32 { /** If the error is a squared error. If false then it's assumed to be distance */ final boolean squaredError; public S32( int maxError, double texture, int tolRightToLeft, boolean squaredError ) { super(maxError, texture, tolRightToLeft); this.squaredError = squaredError; } @Override public boolean select( DisparitySparseRectifiedScoreBM scorer, int x, int y ) { if (super.select(scorer, x, y)) { int disparityRange = scorer.getLocalRangeLtoR(); int[] scores = scorer.getScoreLtoR(); int disparityValue = (int)disparity; if (disparityValue == 0 || disparityValue == disparityRange - 1) { return true; } else { double c0 = scores[disparityValue - 1]; double c1 = scores[disparityValue]; double c2 = scores[disparityValue + 1]; if (!squaredError) { c0 *= c0; c1 *= c1; c2 *= c2; } double offset = (c0 - c2)/(2.0*(c0 - 2.0*c1 + c2)); disparity += offset; return true; } } else { return false; } } } public static class F32 extends SelectSparseErrorWithChecksWta_F32 { /** If the error is a squared error. If false then it's assumed to be distance */ final boolean squaredError; public F32( int maxError, double texture, int tolRightToLeft, boolean squaredError ) { super(maxError, texture, tolRightToLeft); this.squaredError = squaredError; } @Override public boolean select( DisparitySparseRectifiedScoreBM scorer, int x, int y ) { if (super.select(scorer, x, y)) { int disparityRange = scorer.getLocalRangeLtoR(); float[] scores = scorer.getScoreLtoR(); int disparityValue = (int)disparity; if (disparityValue == 0 || disparityValue == disparityRange - 1) { return true; } else { float c0 = scores[disparityValue - 1]; float c1 = scores[disparityValue]; float c2 = scores[disparityValue + 1]; if (!squaredError) { c0 *= c0; c1 *= c1; c2 *= c2; } float offset = (c0 - c2)/(2f*(c0 - 2*c1 + c2)); disparity += offset; return true; } } else { return false; } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy