All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.disparity.sgm.SgmStereoDisparity Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2022, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.disparity.sgm;

import boofcv.struct.image.*;
import lombok.Getter;
import lombok.Setter;

/**
 * Base class for SGM stereo implementations. It combines the cost computation, cost aggregation, and disparity
 * selector steps. Sub-pixel can be optionally computed afterwards.
 *
 * 

NOTE: [1] suggests applying a median filter. This is not done by any of this class' children.

* *

[1] Hirschmuller, Heiko. "Stereo processing by semiglobal matching and mutual information." * IEEE Transactions on pattern analysis and machine intelligence 30.2 (2007): 328-341.

* * @author Peter Abeles */ public abstract class SgmStereoDisparity, C extends ImageBase> { // Defines the disparity search range @Getter @Setter protected int disparityMin = 0; // minimum disparity considered @Getter @Setter protected int disparityRange = 0; // number of disparity values considered // These perform different steps in the SGM algorithm @Getter protected SgmDisparityCost sgmCost; @Getter protected SgmCostAggregation aggregation = new SgmCostAggregation(); @Getter protected SgmDisparitySelector selector; @Getter protected SgmHelper helper = new SgmHelper(); // Cost tensor. See SgmDisparityCost protected Planar costYXD = new Planar<>(GrayU16.class, 1, 1, 1); // Storage for found disparity @Getter protected GrayU8 disparity = new GrayU8(1, 1); // score for selected disparity @Getter protected GrayF32 score = new GrayF32(1, 1); protected SgmStereoDisparity( SgmDisparityCost sgmCost, SgmDisparitySelector selector ) { this.sgmCost = sgmCost; this.selector = selector; } /** * Computes disparity * * @param left (Input) left rectified stereo image * @param right (Input) right rectified stereo image */ public abstract void process( T left, T right ); // TODO remove need to compute U8 first public void subpixel( GrayU8 src, GrayF32 dst ) { dst.reshape(src); Planar aggregatedYXD = aggregation.getAggregated(); for (int y = 0; y < aggregatedYXD.getNumBands(); y++) { GrayU16 costXD = aggregatedYXD.getBand(y); for (int x = 0; x < disparityMin; x++) { dst.unsafe_set(x, y, disparityRange); // make as invalid } for (int x = disparityMin; x < costXD.height; x++) { int localMaxRange = helper.localDisparityRangeLeft(x); int d = src.unsafe_get(x, y); float subpixel; if (d > 0 && d < localMaxRange - 1) { int adjX = x - disparityMin; // see how cost tensor is defined int c0 = costXD.unsafe_get(d - 1, adjX); int c1 = costXD.unsafe_get(d, adjX); int c2 = costXD.unsafe_get(d + 1, adjX); float offset = (float)(c0 - c2)/(float)(2*(c0 - 2*c1 + c2)); subpixel = d + offset; } else { subpixel = d; } dst.unsafe_set(x, y, subpixel); } } } /** * Extracts the score from the cost volumn */ public void saveScore() { Planar aggregatedYXD = aggregation.getAggregated(); score.reshape(disparity); for (int y = 0; y < aggregatedYXD.getNumBands(); y++) { GrayU16 costXD = aggregatedYXD.getBand(y); for (int x = 0; x < disparityMin; x++) { score.unsafe_set(x, y, Float.NaN); // make as invalid } for (int x = disparityMin; x < costXD.height; x++) { int d = disparity.unsafe_get(x, y); if (d >= disparityRange) { score.unsafe_set(x, y, Float.NaN); } else { score.unsafe_set(x, y, costXD.unsafe_get(d, x - disparityMin)); } } } } public int getInvalidDisparity() { return selector.getInvalidDisparity(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy