All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.abst.denoise.FactoryImageDenoise Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.6
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.abst.denoise;

import boofcv.abst.transform.wavelet.WaveletTransform;
import boofcv.alg.denoise.DenoiseWavelet;
import boofcv.core.image.border.BorderType;
import boofcv.factory.denoise.FactoryDenoiseWaveletAlg;
import boofcv.factory.transform.wavelet.FactoryWaveletDaub;
import boofcv.factory.transform.wavelet.FactoryWaveletTransform;
import boofcv.struct.image.ImageDataType;
import boofcv.struct.image.ImageGray;
import boofcv.struct.image.ImageType;
import boofcv.struct.wavelet.WaveletDescription;
import boofcv.struct.wavelet.WlCoef_F32;
import boofcv.struct.wavelet.WlCoef_I32;


/**
 * 

* Provides and easy to use interface for removing noise from images. In some cases * more advanced option are hidden for sake of ease of use. *

* * @author Peter Abeles */ @SuppressWarnings({"unchecked"}) public class FactoryImageDenoise { /** * Denoises an image using VISU Shrink wavelet denoiser. * * @param imageType The type of image being transform. * @param numLevels Number of levels in the wavelet transform. If not sure, try using 3. * @param minPixelValue Minimum allowed pixel intensity value * @param maxPixelValue Maximum allowed pixel intensity value * @return filter for image noise removal. */ public static > WaveletDenoiseFilter waveletVisu( Class imageType , int numLevels , double minPixelValue , double maxPixelValue ) { ImageDataType info = ImageDataType.classToType(imageType); WaveletTransform descTran = createDefaultShrinkTransform(info, numLevels,minPixelValue,maxPixelValue); DenoiseWavelet denoiser = FactoryDenoiseWaveletAlg.visu(imageType); return new WaveletDenoiseFilter<>(descTran, denoiser); } /** * Denoises an image using BayesShrink wavelet denoiser. * * @param imageType The type of image being transform. * @param numLevels Number of levels in the wavelet transform. If not sure, try using 3. * @param minPixelValue Minimum allowed pixel intensity value * @param maxPixelValue Maximum allowed pixel intensity value * @return filter for image noise removal. */ public static > WaveletDenoiseFilter waveletBayes( Class imageType , int numLevels , double minPixelValue , double maxPixelValue ) { ImageDataType info = ImageDataType.classToType(imageType); WaveletTransform descTran = createDefaultShrinkTransform(info, numLevels,minPixelValue,maxPixelValue); DenoiseWavelet denoiser = FactoryDenoiseWaveletAlg.bayes(null, imageType); return new WaveletDenoiseFilter<>(descTran, denoiser); } /** * Denoises an image using SureShrink wavelet denoiser. * * @param imageType The type of image being transform. * @param numLevels Number of levels in the wavelet transform. If not sure, try using 3. * @param minPixelValue Minimum allowed pixel intensity value * @param maxPixelValue Maximum allowed pixel intensity value * @return filter for image noise removal. */ public static > WaveletDenoiseFilter waveletSure( Class imageType , int numLevels , double minPixelValue , double maxPixelValue ) { ImageDataType info = ImageDataType.classToType(imageType); WaveletTransform descTran = createDefaultShrinkTransform(info, numLevels,minPixelValue,maxPixelValue); DenoiseWavelet denoiser = FactoryDenoiseWaveletAlg.sure(imageType); return new WaveletDenoiseFilter<>(descTran, denoiser); } /** * Default wavelet transform used for denoising images. */ private static WaveletTransform createDefaultShrinkTransform(ImageDataType imageType, int numLevels, double minPixelValue , double maxPixelValue ) { WaveletTransform descTran; if( !imageType.isInteger()) { WaveletDescription waveletDesc_F32 = FactoryWaveletDaub.daubJ_F32(4); descTran = FactoryWaveletTransform.create_F32(waveletDesc_F32,numLevels, (float)minPixelValue,(float)maxPixelValue); } else { WaveletDescription waveletDesc_I32 = FactoryWaveletDaub.biorthogonal_I32(5, BorderType.REFLECT); descTran = FactoryWaveletTransform.create_I(waveletDesc_I32,numLevels, (int)minPixelValue,(int)maxPixelValue, ImageType.getImageClass(ImageType.Family.GRAY, imageType)); } return descTran; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy