boofcv.alg.transform.pyramid.PyramidDiscreteSampleBlur Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-ip Show documentation
Show all versions of boofcv-ip Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.transform.pyramid;
import boofcv.abst.filter.convolve.ConvolveDown;
import boofcv.core.image.border.BorderType;
import boofcv.factory.filter.convolve.FactoryConvolveDown;
import boofcv.struct.convolve.Kernel1D;
import boofcv.struct.image.ImageBase;
import boofcv.struct.image.ImageType;
import boofcv.struct.pyramid.PyramidDiscrete;
/**
*
* Convolves a re-normalizable blur kernel across the image before down sampling. This is useful for creating
* a Gaussian pyramid as well as other standard pyramids.
*
*
*
* NOTE: This pyramid cannot be configured such that blur will be applied to the input image. It can be done by
* the user before the image is passed in.
*
*
*
* NOTE: This blur magnitude is constant for each level in the pyramid. In general it is desirable to
* have it dependent on each level's scale factor.
*
*
* @author Peter Abeles
*/
@SuppressWarnings({"unchecked"})
public class PyramidDiscreteSampleBlur> extends PyramidDiscrete {
// stores the results from the first convolution
private T temp;
ConvolveDown horizontal;
ConvolveDown vertical;
// amount of blur applied to each layer
double sigmas[];
/**
*
* @param kernel A blur kernel
* @param sigma The effective amount of Gaussian blur the kernel applies
* @param imageType Type of image processed
* @param saveOriginalReference If a reference to the full resolution image should be saved instead of copied.
* Set to false if you don't know what you are doing.
* @param scaleFactors Scale factor for each layer in the pyramid relative to the input layer
*/
public PyramidDiscreteSampleBlur(Kernel1D kernel, double sigma, ImageType imageType,
boolean saveOriginalReference, int... scaleFactors)
{
super(imageType,saveOriginalReference,scaleFactors);
horizontal = FactoryConvolveDown.convolve(kernel, BorderType.NORMALIZED, true, 1, imageType,imageType);
vertical = FactoryConvolveDown.convolve(kernel, BorderType.NORMALIZED, false, 1, imageType,imageType);
sigmas = new double[ scaleFactors.length ];
sigmas[0] = 0;
for( int i = 1; i < sigmas.length; i++ ) {
// blur in previous layer
double prev = sigmas[i-1];
// the effective amount of blur applied to previous layer while being down sampled
double applied = sigma*scaleFactors[i-1];
// The amount of blur which has been applied to this layer
sigmas[i] = Math.sqrt(prev*prev + applied*applied);
}
}
@Override
public void process(T input) {
super.initialize(input.width,input.height);
if( temp == null ) {
// declare it to be the latest image that it might need to be, resize below
temp = (T)input.createNew(1,1);
}
if (scale[0] == 1) {
if (isSaveOriginalReference()) {
setFirstLayer(input);
} else {
getLayer(0).setTo(input);
}
} else {
int skip = scale[0];
horizontal.setSkip(skip);
vertical.setSkip(skip);
temp.reshape(input.width/skip,input.height);
horizontal.process(input,temp);
vertical.process(temp,getLayer(0));
}
for (int index = 1; index < getNumLayers(); index++) {
int skip = scale[index]/scale[index-1];
T prev = getLayer(index-1);
temp.reshape(prev.width/skip,prev.height);
horizontal.setSkip(skip);
vertical.setSkip(skip);
horizontal.process(prev,temp);
vertical.process(temp,getLayer(index));
}
}
/**
* There is no offset since a symmetric kernel is applied starting at pixel (0,0)
*
* @param layer Layer in the pyramid
* @return offset
*/
@Override
public double getSampleOffset(int layer) {
return 0;
}
@Override
public double getSigma(int layer) {
return sigmas[layer];
}
}