All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.denoise.wavelet.DenoiseBayesShrink_F32 Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.6
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.denoise.wavelet;

import boofcv.alg.denoise.ShrinkThresholdRule;
import boofcv.alg.misc.ImageStatistics;
import boofcv.struct.image.GrayF32;


/**
 * 

* Denoises images using an adaptive soft-threshold in each sub-band computed using Bayesian statistics. *

* *

* Wavelet coefficients are modified using a standard soft-thresholding technique. The threshold * is computing using an adaptively for each sub-band, as follows:
* T = σ2X
* where σ is the noise standard deviation and σX is the signal standard deviation. *

* *

* S. Change, B. Yu, M. Vetterli, "Adaptive Wavelet Thresholding for Image Denoising and Compression" * IEEE Tran. Image Processing, Vol 9, No. 9, Sept. 2000 *

* * @author Peter Abeles */ public class DenoiseBayesShrink_F32 extends SubbandShrink { float noiseVariance; public DenoiseBayesShrink_F32( ShrinkThresholdRule rule ) { super(rule); } @Override protected Number computeThreshold( GrayF32 subband ) { // the maximum magnitude coefficient is used to normalize all the other coefficients // and reduce numerical round-off error float max = ImageStatistics.maxAbs(subband); float varianceY = 0; for( int y = 0; y < subband.height; y++ ) { int index = subband.startIndex + subband.stride*y; int end = index + subband.width; for( ;index < end; index++ ) { float v = subband.data[index]/max; varianceY += v*v; } } // undo normalization. // these coefficients are modeled as being zero mean, so the variance can be computed this way varianceY = (varianceY/(subband.width*subband.height))*max*max; // signal standard deviation float inner = varianceY-noiseVariance; if( inner < 0 ) return Float.POSITIVE_INFINITY; else return noiseVariance/(float)Math.sqrt(inner); } @Override public void denoise(GrayF32 transform , int numLevels ) { int w = transform.width; int h = transform.height; // compute the noise variance using the HH_1 subband noiseVariance = UtilDenoiseWavelet.estimateNoiseStdDev(transform.subimage(w/2,h/2,w,h, null),null); noiseVariance *= noiseVariance; // System.out.println("Noise Variance: "+noiseVariance); performShrinkage(transform,numLevels); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy