boofcv.alg.denoise.wavelet.DenoiseBayesShrink_F32 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-ip Show documentation
Show all versions of boofcv-ip Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.denoise.wavelet;
import boofcv.alg.denoise.ShrinkThresholdRule;
import boofcv.alg.misc.ImageStatistics;
import boofcv.struct.image.GrayF32;
/**
*
* Denoises images using an adaptive soft-threshold in each sub-band computed using Bayesian statistics.
*
*
*
* Wavelet coefficients are modified using a standard soft-thresholding technique. The threshold
* is computing using an adaptively for each sub-band, as follows:
* T = σ2/σX
* where σ is the noise standard deviation and σX is the signal standard deviation.
*
*
*
* S. Change, B. Yu, M. Vetterli, "Adaptive Wavelet Thresholding for Image Denoising and Compression"
* IEEE Tran. Image Processing, Vol 9, No. 9, Sept. 2000
*
*
* @author Peter Abeles
*/
public class DenoiseBayesShrink_F32 extends SubbandShrink {
float noiseVariance;
public DenoiseBayesShrink_F32( ShrinkThresholdRule rule ) {
super(rule);
}
@Override
protected Number computeThreshold( GrayF32 subband )
{
// the maximum magnitude coefficient is used to normalize all the other coefficients
// and reduce numerical round-off error
float max = ImageStatistics.maxAbs(subband);
float varianceY = 0;
for( int y = 0; y < subband.height; y++ ) {
int index = subband.startIndex + subband.stride*y;
int end = index + subband.width;
for( ;index < end; index++ ) {
float v = subband.data[index]/max;
varianceY += v*v;
}
}
// undo normalization.
// these coefficients are modeled as being zero mean, so the variance can be computed this way
varianceY = (varianceY/(subband.width*subband.height))*max*max;
// signal standard deviation
float inner = varianceY-noiseVariance;
if( inner < 0 )
return Float.POSITIVE_INFINITY;
else
return noiseVariance/(float)Math.sqrt(inner);
}
@Override
public void denoise(GrayF32 transform , int numLevels ) {
int w = transform.width;
int h = transform.height;
// compute the noise variance using the HH_1 subband
noiseVariance = UtilDenoiseWavelet.estimateNoiseStdDev(transform.subimage(w/2,h/2,w,h, null),null);
noiseVariance *= noiseVariance;
// System.out.println("Noise Variance: "+noiseVariance);
performShrinkage(transform,numLevels);
}
}