All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.misc.impl.ImplImageStatistics_MT Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.6
Show newest version
/*
 * Copyright (c) 2023, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.misc.impl;

import boofcv.struct.image.*;
import javax.annotation.Generated;
import java.util.Arrays;

import java.util.ArrayList;
import java.util.List;
import boofcv.concurrency.BoofConcurrency;

/**
 * Computes statistical properties of pixels inside an image.
 *
 *
 * 

DO NOT MODIFY. Automatically generated code created by GenerateImplImageStatistics

* * @author Peter Abeles */ @Generated("boofcv.alg.misc.impl.ImplImageStatistics") public class ImplImageStatistics_MT { public static int minU( byte[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]& 0xFF; return BoofConcurrency.min(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] & 0xFF; if( v < output ) output = v; } return output;}).intValue(); } public static int maxU( byte[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]& 0xFF; return BoofConcurrency.max(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] & 0xFF; if( v > output ) output = v; } return output;}).intValue(); } public static int maxAbsU( byte[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]& 0xFF; return BoofConcurrency.max(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] & 0xFF; if( v > output ) output = v; } return output;}).intValue(); } public static double meanDiffSqU(byte []dataA, int startIndexA , int strideA, byte []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,int.class,y->{ int total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA]& 0xFF)-(dataB[indexB]& 0xFF); total += difference*difference; } return total;}).intValue()/ (double)(rows*columns); } public static double meanDiffAbsU(byte []dataA, int startIndexA , int strideA, byte []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,int.class,y->{ int total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA]& 0xFF)-(dataB[indexB]& 0xFF); total += Math.abs(difference); } return total;}).intValue()/ (double)(rows*columns); } public static int sum( GrayU8 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] & 0xFF; } return total;}).intValue(); } public static int sum( InterleavedU8 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] & 0xFF; } return total;}).intValue(); } public static double variance( GrayU8 img , double mean ) { return BoofConcurrency.sum(0,img.height,double.class,y->{ double total = 0; int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]& 0xFF) - mean; total += d*d; } return total;}).intValue()/(img.width*img.height); } public static void histogram( GrayU8 input , int minValue , int[] histogram ) { Arrays.fill(histogram,0); final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(input.data[index++]& 0xFF) - minValue ]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static void histogramScaled( GrayU8 input , int minValue , int maxValue, int[] histogram ) { Arrays.fill(histogram,0); final int histLength = histogram.length; final int rangeValue = maxValue-minValue+1; final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(int)(histLength*((input.data[index++]& 0xFF) - minValue)/rangeValue) ]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static int min( byte[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]; return BoofConcurrency.min(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] ; if( v < output ) output = v; } return output;}).intValue(); } public static int max( byte[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]; return BoofConcurrency.max(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] ; if( v > output ) output = v; } return output;}).intValue(); } public static int maxAbs( byte[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]; return BoofConcurrency.max(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = Math.abs(array[index]); if( v > output ) output = v; } return output;}).intValue(); } public static double meanDiffSq(byte []dataA, int startIndexA , int strideA, byte []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,int.class,y->{ int total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA])-(dataB[indexB]); total += difference*difference; } return total;}).intValue()/ (double)(rows*columns); } public static double meanDiffAbs(byte []dataA, int startIndexA , int strideA, byte []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,int.class,y->{ int total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA])-(dataB[indexB]); total += Math.abs(difference); } return total;}).intValue()/ (double)(rows*columns); } public static int sum( GrayS8 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } return total;}).intValue(); } public static int sumAbs( GrayS8 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += Math.abs(img.data[index] ); } return total;}).intValue(); } public static int sum( InterleavedS8 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } return total;}).intValue(); } public static int sumAbs( InterleavedS8 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += Math.abs(img.data[index] ); } return total;}).intValue(); } public static double variance( GrayS8 img , double mean ) { return BoofConcurrency.sum(0,img.height,double.class,y->{ double total = 0; int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]) - mean; total += d*d; } return total;}).intValue()/(img.width*img.height); } public static void histogram( GrayS8 input , int minValue , int[] histogram ) { Arrays.fill(histogram,0); final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(input.data[index++]) - minValue ]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static void histogramScaled( GrayS8 input , int minValue , int maxValue, int[] histogram ) { Arrays.fill(histogram,0); final int histLength = histogram.length; final int rangeValue = maxValue-minValue+1; final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(int)(histLength*((input.data[index++]) - minValue)/rangeValue) ]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static int minU( short[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]& 0xFFFF; return BoofConcurrency.min(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] & 0xFFFF; if( v < output ) output = v; } return output;}).intValue(); } public static int maxU( short[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]& 0xFFFF; return BoofConcurrency.max(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] & 0xFFFF; if( v > output ) output = v; } return output;}).intValue(); } public static int maxAbsU( short[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]& 0xFFFF; return BoofConcurrency.max(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] & 0xFFFF; if( v > output ) output = v; } return output;}).intValue(); } public static double meanDiffSqU(short []dataA, int startIndexA , int strideA, short []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,int.class,y->{ int total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA]& 0xFFFF)-(dataB[indexB]& 0xFFFF); total += difference*difference; } return total;}).intValue()/ (double)(rows*columns); } public static double meanDiffAbsU(short []dataA, int startIndexA , int strideA, short []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,int.class,y->{ int total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA]& 0xFFFF)-(dataB[indexB]& 0xFFFF); total += Math.abs(difference); } return total;}).intValue()/ (double)(rows*columns); } public static int sum( GrayU16 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] & 0xFFFF; } return total;}).intValue(); } public static int sum( InterleavedU16 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] & 0xFFFF; } return total;}).intValue(); } public static double variance( GrayU16 img , double mean ) { return BoofConcurrency.sum(0,img.height,double.class,y->{ double total = 0; int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]& 0xFFFF) - mean; total += d*d; } return total;}).intValue()/(img.width*img.height); } public static void histogram( GrayU16 input , int minValue , int[] histogram ) { Arrays.fill(histogram,0); final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(input.data[index++]& 0xFFFF) - minValue ]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static void histogramScaled( GrayU16 input , int minValue , int maxValue, int[] histogram ) { Arrays.fill(histogram,0); final int histLength = histogram.length; final int rangeValue = maxValue-minValue+1; final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(int)(histLength*((input.data[index++]& 0xFFFF) - minValue)/rangeValue) ]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static int min( short[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]; return BoofConcurrency.min(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] ; if( v < output ) output = v; } return output;}).intValue(); } public static int max( short[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]; return BoofConcurrency.max(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] ; if( v > output ) output = v; } return output;}).intValue(); } public static int maxAbs( short[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]; return BoofConcurrency.max(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = Math.abs(array[index]); if( v > output ) output = v; } return output;}).intValue(); } public static double meanDiffSq(short []dataA, int startIndexA , int strideA, short []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,int.class,y->{ int total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA])-(dataB[indexB]); total += difference*difference; } return total;}).intValue()/ (double)(rows*columns); } public static double meanDiffAbs(short []dataA, int startIndexA , int strideA, short []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,int.class,y->{ int total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA])-(dataB[indexB]); total += Math.abs(difference); } return total;}).intValue()/ (double)(rows*columns); } public static int sum( GrayS16 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } return total;}).intValue(); } public static int sumAbs( GrayS16 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += Math.abs(img.data[index] ); } return total;}).intValue(); } public static int sum( InterleavedS16 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } return total;}).intValue(); } public static int sumAbs( InterleavedS16 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += Math.abs(img.data[index] ); } return total;}).intValue(); } public static double variance( GrayS16 img , double mean ) { return BoofConcurrency.sum(0,img.height,double.class,y->{ double total = 0; int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]) - mean; total += d*d; } return total;}).intValue()/(img.width*img.height); } public static void histogram( GrayS16 input , int minValue , int[] histogram ) { Arrays.fill(histogram,0); final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(input.data[index++]) - minValue ]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static void histogramScaled( GrayS16 input , int minValue , int maxValue, int[] histogram ) { Arrays.fill(histogram,0); final int histLength = histogram.length; final int rangeValue = maxValue-minValue+1; final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(int)(histLength*((input.data[index++]) - minValue)/rangeValue) ]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static int min( int[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]; return BoofConcurrency.min(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] ; if( v < output ) output = v; } return output;}).intValue(); } public static int max( int[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]; return BoofConcurrency.max(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] ; if( v > output ) output = v; } return output;}).intValue(); } public static int maxAbs( int[] array , int startIndex , int rows , int columns , int stride ) { final int _output = array[startIndex]; return BoofConcurrency.max(0,rows,int.class,y->{ int output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = Math.abs(array[index]); if( v > output ) output = v; } return output;}).intValue(); } public static double meanDiffSq(int []dataA, int startIndexA , int strideA, int []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,int.class,y->{ int total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA])-(dataB[indexB]); total += difference*difference; } return total;}).intValue()/ (double)(rows*columns); } public static double meanDiffAbs(int []dataA, int startIndexA , int strideA, int []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,int.class,y->{ int total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA])-(dataB[indexB]); total += Math.abs(difference); } return total;}).intValue()/ (double)(rows*columns); } public static int sum( GrayS32 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } return total;}).intValue(); } public static int sumAbs( GrayS32 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += Math.abs(img.data[index] ); } return total;}).intValue(); } public static int sum( InterleavedS32 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } return total;}).intValue(); } public static int sumAbs( InterleavedS32 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,int.class,y->{ int total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += Math.abs(img.data[index] ); } return total;}).intValue(); } public static double variance( GrayS32 img , double mean ) { return BoofConcurrency.sum(0,img.height,double.class,y->{ double total = 0; int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]) - mean; total += d*d; } return total;}).intValue()/(img.width*img.height); } public static void histogram( GrayS32 input , int minValue , int[] histogram ) { Arrays.fill(histogram,0); final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(input.data[index++]) - minValue ]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static void histogramScaled( GrayS32 input , int minValue , int maxValue, int[] histogram ) { Arrays.fill(histogram,0); final int histLength = histogram.length; final int rangeValue = maxValue-minValue+1; final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(int)(histLength*((input.data[index++]) - minValue)/rangeValue) ]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static long min( long[] array , int startIndex , int rows , int columns , int stride ) { final long _output = array[startIndex]; return BoofConcurrency.min(0,rows,long.class,y->{ long output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { long v = array[index] ; if( v < output ) output = v; } return output;}).longValue(); } public static long max( long[] array , int startIndex , int rows , int columns , int stride ) { final long _output = array[startIndex]; return BoofConcurrency.max(0,rows,long.class,y->{ long output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { long v = array[index] ; if( v > output ) output = v; } return output;}).longValue(); } public static long maxAbs( long[] array , int startIndex , int rows , int columns , int stride ) { final long _output = array[startIndex]; return BoofConcurrency.max(0,rows,long.class,y->{ long output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { long v = Math.abs(array[index]); if( v > output ) output = v; } return output;}).longValue(); } public static double meanDiffSq(long []dataA, int startIndexA , int strideA, long []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,long.class,y->{ long total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { long difference = (dataA[indexA])-(dataB[indexB]); total += difference*difference; } return total;}).longValue()/ (double)(rows*columns); } public static double meanDiffAbs(long []dataA, int startIndexA , int strideA, long []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,long.class,y->{ long total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { long difference = (dataA[indexA])-(dataB[indexB]); total += Math.abs(difference); } return total;}).longValue()/ (double)(rows*columns); } public static long sum( GrayS64 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,long.class,y->{ long total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } return total;}).longValue(); } public static long sumAbs( GrayS64 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,long.class,y->{ long total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += Math.abs(img.data[index] ); } return total;}).longValue(); } public static long sum( InterleavedS64 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,long.class,y->{ long total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } return total;}).longValue(); } public static long sumAbs( InterleavedS64 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,long.class,y->{ long total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += Math.abs(img.data[index] ); } return total;}).longValue(); } public static double variance( GrayS64 img , double mean ) { return BoofConcurrency.sum(0,img.height,double.class,y->{ double total = 0; int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]) - mean; total += d*d; } return total;}).longValue()/(img.width*img.height); } public static void histogram( GrayS64 input , long minValue , int[] histogram ) { Arrays.fill(histogram,0); final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(int)(input.data[index++] - minValue)]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static void histogramScaled( GrayS64 input , long minValue , long maxValue, int[] histogram ) { Arrays.fill(histogram,0); final long histLength = histogram.length; final long rangeValue = maxValue-minValue+1; final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(int)(histLength*(input.data[index++] - minValue)/rangeValue)]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static float min( float[] array , int startIndex , int rows , int columns , int stride ) { final float _output = array[startIndex]; return BoofConcurrency.min(0,rows,float.class,y->{ float output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { float v = array[index] ; if( v < output ) output = v; } return output;}).floatValue(); } public static float max( float[] array , int startIndex , int rows , int columns , int stride ) { final float _output = array[startIndex]; return BoofConcurrency.max(0,rows,float.class,y->{ float output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { float v = array[index] ; if( v > output ) output = v; } return output;}).floatValue(); } public static float maxAbs( float[] array , int startIndex , int rows , int columns , int stride ) { final float _output = array[startIndex]; return BoofConcurrency.max(0,rows,float.class,y->{ float output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { float v = Math.abs(array[index]); if( v > output ) output = v; } return output;}).floatValue(); } public static double meanDiffSq(float []dataA, int startIndexA , int strideA, float []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,float.class,y->{ float total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { float difference = (dataA[indexA])-(dataB[indexB]); total += difference*difference; } return total;}).floatValue()/ (double)(rows*columns); } public static double meanDiffAbs(float []dataA, int startIndexA , int strideA, float []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,float.class,y->{ float total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { float difference = (dataA[indexA])-(dataB[indexB]); total += Math.abs(difference); } return total;}).floatValue()/ (double)(rows*columns); } public static float sum( GrayF32 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,float.class,y->{ float total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } return total;}).floatValue(); } public static float sumAbs( GrayF32 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,float.class,y->{ float total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += Math.abs(img.data[index] ); } return total;}).floatValue(); } public static float sum( InterleavedF32 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,float.class,y->{ float total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } return total;}).floatValue(); } public static float sumAbs( InterleavedF32 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,float.class,y->{ float total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += Math.abs(img.data[index] ); } return total;}).floatValue(); } public static float variance( GrayF32 img , float mean ) { return BoofConcurrency.sum(0,img.height,float.class,y->{ float total = 0; int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { float d = (img.data[index]) - mean; total += d*d; } return total;}).floatValue()/(img.width*img.height); } public static void histogram( GrayF32 input , float minValue , int[] histogram ) { Arrays.fill(histogram,0); final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(int)(input.data[index++] - minValue)]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static void histogramScaled( GrayF32 input , float minValue , float maxValue, int[] histogram ) { Arrays.fill(histogram,0); final float histLength = histogram.length; final float rangeValue = maxValue-minValue+1; final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(int)(histLength*(input.data[index++] - minValue)/rangeValue)]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static double min( double[] array , int startIndex , int rows , int columns , int stride ) { final double _output = array[startIndex]; return BoofConcurrency.min(0,rows,double.class,y->{ double output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { double v = array[index] ; if( v < output ) output = v; } return output;}).doubleValue(); } public static double max( double[] array , int startIndex , int rows , int columns , int stride ) { final double _output = array[startIndex]; return BoofConcurrency.max(0,rows,double.class,y->{ double output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { double v = array[index] ; if( v > output ) output = v; } return output;}).doubleValue(); } public static double maxAbs( double[] array , int startIndex , int rows , int columns , int stride ) { final double _output = array[startIndex]; return BoofConcurrency.max(0,rows,double.class,y->{ double output = _output; int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { double v = Math.abs(array[index]); if( v > output ) output = v; } return output;}).doubleValue(); } public static double meanDiffSq(double []dataA, int startIndexA , int strideA, double []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,double.class,y->{ double total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { double difference = (dataA[indexA])-(dataB[indexB]); total += difference*difference; } return total;}).doubleValue()/ (double)(rows*columns); } public static double meanDiffAbs(double []dataA, int startIndexA , int strideA, double []dataB, int startIndexB , int strideB, int rows , int columns ) { return BoofConcurrency.sum(0,rows,double.class,y->{ double total = 0; int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { double difference = (dataA[indexA])-(dataB[indexB]); total += Math.abs(difference); } return total;}).doubleValue()/ (double)(rows*columns); } public static double sum( GrayF64 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,double.class,y->{ double total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } return total;}).doubleValue(); } public static double sumAbs( GrayF64 img ) { final int rows = img.height; final int columns = img.width; return BoofConcurrency.sum(0,img.height,double.class,y->{ double total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += Math.abs(img.data[index] ); } return total;}).doubleValue(); } public static double sum( InterleavedF64 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,double.class,y->{ double total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } return total;}).doubleValue(); } public static double sumAbs( InterleavedF64 img ) { final int rows = img.height; final int columns = img.width*img.numBands; return BoofConcurrency.sum(0,img.height,double.class,y->{ double total = 0; int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += Math.abs(img.data[index] ); } return total;}).doubleValue(); } public static double variance( GrayF64 img , double mean ) { return BoofConcurrency.sum(0,img.height,double.class,y->{ double total = 0; int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]) - mean; total += d*d; } return total;}).doubleValue()/(img.width*img.height); } public static void histogram( GrayF64 input , double minValue , int[] histogram ) { Arrays.fill(histogram,0); final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(int)(input.data[index++] - minValue)]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } public static void histogramScaled( GrayF64 input , double minValue , double maxValue, int[] histogram ) { Arrays.fill(histogram,0); final double histLength = histogram.length; final double rangeValue = maxValue-minValue+1; final List list = new ArrayList<>(); BoofConcurrency.loopBlocks(0,input.height,(y0,y1)->{ final int[] h = new int[histogram.length]; for( int y = y0; y < y1; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; while( index < end ) { h[(int)(histLength*(input.data[index++] - minValue)/rangeValue)]++; } } synchronized(list){list.add(h);}}); for (int i = 0; i < list.size(); i++) { int[] h = list.get(i); for (int j = 0; j < histogram.length; j++) { histogram[j] += h[j]; } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy