boofcv.alg.transform.pyramid.PyramidDiscreteNN2 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-ip Show documentation
Show all versions of boofcv-ip Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
The newest version!
/*
* Copyright (c) 2011-2020, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.transform.pyramid;
import boofcv.abst.distort.FDistort;
import boofcv.struct.image.ImageBase;
import boofcv.struct.image.ImageType;
import boofcv.struct.pyramid.ConfigDiscreteLevels;
/**
* Discrete image pyramid where each level is always a factor of two and sub-sampled using nearest-neighbor
* interpolation
*
* @author Peter Abeles
*/
public class PyramidDiscreteNN2> {
ImageType imageType;
FDistort distort;
private ConfigDiscreteLevels configLayers = new ConfigDiscreteLevels();
// Levels in the pyramid
T[] levels;
public PyramidDiscreteNN2( ImageType imageType ) {
this.imageType = imageType;
levels = imageType.createArray(0);
distort = new FDistort(imageType);
distort.interpNN();
}
public void process(T input) {
int requestedLayers = configLayers.computeLayers(input.width,input.height);
if( levels.length != requestedLayers ) {
declareArray(requestedLayers);
}
// level 0 is always the input image
levels[0] = input;
// scale down each image by a factor of two relative to the previous level
int scale = 2;
for (int level = 1; level < levels.length; level++) {
int width = input.width/scale;
int height = input.height/scale;
levels[level].reshape(width,height);
distort.input(levels[level-1]);
distort.output(levels[level]);
distort.scaleExt();
distort.apply();
scale *= 2;
}
}
private void declareArray( int numLevels ) {
levels = imageType.createArray(numLevels);
for (int i = 1; i < levels.length; i++) {
levels[i] = imageType.createImage(1,1);
}
}
public T get( int i ) {
return levels[i];
}
public T getLayer( int i ) {
return levels[i];
}
public ImageType getImageType() {
return imageType;
}
public int getLevelsCount() {
return levels.length;
}
public ConfigDiscreteLevels getConfigLayers() {
return configLayers;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy