boofcv.abst.fiducial.calib.ConfigChessboard Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-recognition Show documentation
Show all versions of boofcv-recognition Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.fiducial.calib;
import boofcv.abst.shapes.polyline.ConfigPolylineSplitMerge;
import boofcv.alg.fiducial.calib.chess.DetectChessboardFiducial;
import boofcv.factory.filter.binary.ConfigThreshold;
import boofcv.factory.filter.binary.ConfigThresholdLocalOtsu;
import boofcv.factory.shape.ConfigPolygonDetector;
import boofcv.struct.ConfigLength;
import boofcv.struct.Configuration;
/**
* Calibration parameters for chessboard style calibration grid.
*
* @see DetectChessboardFiducial
*
* @author Peter Abeles
*/
public class ConfigChessboard implements Configuration {
/**
* Number of squares tall the grid is. Target dependent.
*/
public int numRows = -1;
/**
* Number of squares wide the grid is. Target dependent.
*/
public int numCols = -1;
/**
* The maximum distance in pixels that two corners can be from each other. In well focused image
* this number can be only a few pixels. The default value has been selected to handle blurred images.
*
* If relative it is relative to min(image.width,image.height)
*/
public ConfigLength maximumCornerDistance = ConfigLength.relative(8.0/800.0,8);
/**
* Configuration for thresholding the image
*/
// public ConfigThreshold thresholding = new ConfigThresholdBlockMinMax(21,35,true);
public ConfigThreshold thresholding = new ConfigThresholdLocalOtsu(ConfigLength.relative(0.05,10),10);
/**
* Configuration for square detector.
*
* NOTE: Number of sides, clockwise, and convex are all set by the detector in its consturctor. Values
* specified here are ignored.
*/
public ConfigPolygonDetector square = new ConfigPolygonDetector();
/**
* Physical width of each square on the calibration target
*/
public double squareWidth;
{
// this is being used as a way to smooth out the binary image. Speeds things up quite a bit
thresholding.scale = 0.85;
((ConfigPolylineSplitMerge)square.detector.contourToPoly).cornerScorePenalty = 0.2;
((ConfigPolylineSplitMerge)square.detector.contourToPoly).minimumSideLength = 2;
((ConfigPolylineSplitMerge)square.detector.contourToPoly).thresholdSideSplitScore = 0;
// max side error is increased for shapes which are parially outside of the image, but the local threshold
// makes them concave
((ConfigPolylineSplitMerge)square.detector.contourToPoly).maxSideError = new ConfigLength(2,0.5);
// ((ConfigPolylineSplitMerge)square.detector.contourToPoly).convexTest = 1000;
square.detector.tangentEdgeIntensity = 2.5; // the initial contour is the result of being eroded
square.detector.minimumContour = ConfigLength.fixed(10);
square.detector.canTouchBorder = true;
// defaults for if the user toggles it to lines
square.refineGray.cornerOffset = 1;
square.refineGray.sampleRadius = 3;
square.refineGray.lineSamples = 15;
square.refineGray.convergeTolPixels = 0.2;
square.refineGray.maxIterations = 5;
}
public ConfigChessboard(int numRows, int numCols, double squareWidth) {
this.numRows = numRows;
this.numCols = numCols;
this.squareWidth = squareWidth;
}
@Override
public void checkValidity() {
if( numCols <= 0 || numRows <= 0 )
throw new IllegalArgumentException("Must specify then number of rows and columns in the target");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy