All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.fiducial.calib.circle.DetectCircleHexagonalGrid Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.fiducial.calib.circle;

import boofcv.abst.filter.binary.BinaryContourFinder;
import boofcv.abst.filter.binary.InputToBinary;
import boofcv.alg.fiducial.calib.circle.EllipseClustersIntoGrid.Grid;
import boofcv.alg.shapes.ellipse.BinaryEllipseDetector;
import boofcv.struct.image.ImageGray;
import georegression.struct.shapes.EllipseRotated_F64;

/**
 * 

Detects a hexagonal circle grid. Circles are spaced such that center of each circle is the same distance from * each of its five neighbors. Rows and columns are counted in a zig-zag pattern, see example below. When there * is symmetric ambiguity the canonical orientation is used.

* *

Canonical orientation is defined as having the rows/columns matched, element (0,0) being occupied. * If there are multiple solution a solution will be selected which is in counter-clockwise order (image coordinates) * and if there is still ambiguity the ellipse closest to the image origin will be selected as (0,0).

* *

* For each circle there is one control point. The control point is first found by detecting all the ellipses, which * is what a circle appears to be under perspective distortion. The center the ellipse might not match the physical * center of the circle. The intersection of lines does not change under perspective distortion. The outer common * tangent lines between neighboring ellipses are found. Then the intersection of two such lines is found. This * intersection will be the physical center of the circle. *

* *
* *
* Example of a 24 by 28 grid; row, column. * * @see KeyPointsCircleHexagonalGrid * * @author Peter Abeles */ public class DetectCircleHexagonalGrid> extends DetectCircleGrid { /** * Creates and configures the detector * * @param numRows number of rows in grid * @param numCols number of columns in grid * @param inputToBinary Converts the input image into a binary image * @param ellipseDetector Detects ellipses inside the image * @param clustering Finds clusters of ellipses */ public DetectCircleHexagonalGrid(int numRows, int numCols, InputToBinary inputToBinary, BinaryEllipseDetector ellipseDetector, EllipsesIntoClusters clustering) { super(numRows,numCols,inputToBinary,ellipseDetector, clustering, new EllipseClustersIntoHexagonalGrid()); } @Override protected void configureContourDetector(T gray) { // overestimate for multiple reasons. Doesn't take in account space and distance between touching circles // isn't correct int diameter = Math.max(gray.width,gray.height)/(Math.max(numCols,numRows)); BinaryContourFinder contourFinder = ellipseDetector.getEllipseDetector().getContourFinder(); contourFinder.setMaxContour((int)(Math.PI*diameter*3)+1); contourFinder.setSaveInnerContour(false); } @Override public int totalEllipses( int numRows , int numCols ) { return (numRows/2)*(numCols/2) + ((numRows+1)/2)*((numCols+1)/2); } /** * Puts the grid into a canonical orientation */ @Override protected void putGridIntoCanonical(Grid g ) { // first put it into a plausible solution if( g.columns != numCols ) { rotateGridCCW(g); } if( g.get(0,0) == null ) { reverse(g); } // select the best corner for canonical if( g.columns%2 == 1 && g.rows%2 == 1) { // first make sure orientation constraint is maintained if( isClockWise(g)) { flipHorizontal(g); } int numRotationsCCW = closestCorner4(g); if( g.columns == g.rows ) { for (int i = 0; i < numRotationsCCW; i++) { rotateGridCCW(g); } } else if( numRotationsCCW == 2 ){ // only two valid solutions. rotate only if the other valid solution is better rotateGridCCW(g); rotateGridCCW(g); } } else if( g.columns%2 == 1 ) { // only two solutions. Go with the one which maintains orientation constraint if( isClockWise(g)) { flipHorizontal(g); } } else if( g.rows%2 == 1 ) { // only two solutions. Go with the one which maintains orientation constraint if( isClockWise(g)) { flipVertical(g); } } } /** * Uses the cross product to determine if the grid is in clockwise order */ private static boolean isClockWise( Grid g ) { EllipseRotated_F64 v00 = g.get(0,0); EllipseRotated_F64 v02 = g.columns<3?g.get(1,1):g.get(0,2); EllipseRotated_F64 v20 = g.rows<3?g.get(1,1):g.get(2,0); double a_x = v02.center.x - v00.center.x; double a_y = v02.center.y - v00.center.y; double b_x = v20.center.x - v00.center.x; double b_y = v20.center.y - v00.center.y; return a_x * b_y - a_y * b_x < 0; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy