All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.fiducial.square.BaseDetectFiducialSquare Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.2.1
Show newest version
/*
 * Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.fiducial.square;

import boofcv.abst.filter.binary.BinaryContourFinder;
import boofcv.abst.filter.binary.InputToBinary;
import boofcv.abst.geo.RefineEpipolar;
import boofcv.alg.distort.*;
import boofcv.alg.geo.h.HomographyLinear4;
import boofcv.alg.interpolate.InterpolatePixelS;
import boofcv.alg.shapes.polygon.DetectPolygonBinaryGrayRefine;
import boofcv.alg.shapes.polygon.DetectPolygonFromContour;
import boofcv.core.image.border.BorderType;
import boofcv.core.image.border.FactoryImageBorder;
import boofcv.factory.distort.FactoryDistort;
import boofcv.factory.geo.EpipolarError;
import boofcv.factory.geo.FactoryMultiView;
import boofcv.factory.interpolate.FactoryInterpolation;
import boofcv.struct.distort.*;
import boofcv.struct.geo.AssociatedPair;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayU8;
import boofcv.struct.image.ImageGray;
import georegression.geometry.UtilPolygons2D_F64;
import georegression.struct.ConvertFloatType;
import georegression.struct.homography.Homography2D_F64;
import georegression.struct.point.Point2D_F64;
import georegression.struct.shapes.Polygon2D_F64;
import georegression.struct.shapes.Quadrilateral_F64;
import org.ddogleg.struct.FastQueue;
import org.ejml.data.DMatrixRMaj;
import org.ejml.ops.ConvertDMatrixStruct;

import java.util.ArrayList;
import java.util.List;

/**
 * 

* Base class for square fiducial detectors. Searches for quadrilaterals inside the image with a black border * and inner contours. It then removes perspective and lens distortion from the candidate quadrilateral and * rendered onto a new image. The just mentioned image is then passed on to the class which extends this one. * After being processed by the extending class, the corners are rotated to match and the 3D pose of the * target found. Lens distortion is removed sparsely for performance reasons. *

* *

* Must call {@link #configure} before it can process an image. *

* *

* Target orientation. Corner 0 = (-r,r), 1 = (r,r) , 2 = (r,-r) , 3 = (-r,-r). *

* * @author Peter Abeles */ // TODO create unit test for bright object public abstract class BaseDetectFiducialSquare> { // Storage for the found fiducials private FastQueue found = new FastQueue<>(FoundFiducial.class, true); // converts input image into a binary image InputToBinary inputToBinary; // Detects the squares private DetectPolygonBinaryGrayRefine squareDetector; // image with lens and perspective distortion removed from it GrayF32 square; // storage for binary image protected GrayU8 binary = new GrayU8(1,1); // Used to compute/remove perspective distortion private HomographyLinear4 computeHomography = new HomographyLinear4(true); private RefineEpipolar refineHomography = FactoryMultiView.refineHomography(1e-4,100, EpipolarError.SAMPSON); private DMatrixRMaj H = new DMatrixRMaj(3,3); private DMatrixRMaj H_refined = new DMatrixRMaj(3,3); private Homography2D_F64 H_fixed = new Homography2D_F64(); private List pairsRemovePerspective = new ArrayList<>(); private ImageDistort removePerspective; private PointTransformHomography_F32 transformHomography = new PointTransformHomography_F32(); private Point2Transform2_F64 undistToDist = new DoNothing2Transform2_F64(); // How wide the border is relative to the fiducial's total width protected double borderWidthFraction; // the minimum fraction of border pixels which must be black for it to be considered a fiducial private double minimumBorderBlackFraction; // Storage for results of fiducial reading private Result result = new Result(); // type of input image private Class inputType; // Smallest allowed aspect ratio between the smallest and largest side in a polygon private double thresholdSideRatio = 0.05; // verbose debugging output protected boolean verbose = false; /** * Configures the detector. * * @param inputToBinary Converts input image into a binary image * @param squareDetector Detects the quadrilaterals in the image * @param borderWidthFraction Fraction of the fiducial's width that the border occupies. 0.25 is recommended. * @param minimumBorderBlackFraction Minimum fraction of pixels inside the border which must be black. Try 0.65 * @param squarePixels Number of pixels wide the undistorted square image of the fiducial's interior is. * This will include the black border. * @param inputType Type of input image it's processing */ protected BaseDetectFiducialSquare(InputToBinary inputToBinary, DetectPolygonBinaryGrayRefine squareDetector, double borderWidthFraction , double minimumBorderBlackFraction , int squarePixels, Class inputType) { squareDetector.getDetector().setOutputClockwise(false); squareDetector.getDetector().setConvex(true); squareDetector.getDetector().setNumberOfSides(4,4); if( borderWidthFraction <= 0 || borderWidthFraction >= 0.5 ) throw new RuntimeException("Border width fraction must be 0 < x < 0.5"); this.borderWidthFraction = borderWidthFraction; this.minimumBorderBlackFraction = minimumBorderBlackFraction; this.inputToBinary = inputToBinary; this.squareDetector = squareDetector; this.inputType = inputType; this.square = new GrayF32(squarePixels,squarePixels); for (int i = 0; i < 4; i++) { pairsRemovePerspective.add(new AssociatedPair()); } // this combines two separate sources of distortion together so that it can be removed in the final image which // is sent to fiducial decoder InterpolatePixelS interp = FactoryInterpolation.nearestNeighborPixelS(inputType); interp.setBorder(FactoryImageBorder.single(inputType, BorderType.EXTENDED)); removePerspective = FactoryDistort.distortSB(false, interp, GrayF32.class); // if no camera parameters is specified default to this removePerspective.setModel(new PointToPixelTransform_F32(transformHomography)); } /** * Specifies the image's intrinsic parameters and target size * * @param distortion Lens distortion * @param width Image width * @param height Image height * @param cache If there's lens distortion should it cache the transforms? Speeds it up by about 12%. Ignored * if no lens distortion */ public void configure(LensDistortionNarrowFOV distortion, int width , int height , boolean cache ) { Point2Transform2_F32 pointSquareToInput; Point2Transform2_F32 pointDistToUndist = distortion.undistort_F32(true,true); Point2Transform2_F32 pointUndistToDist = distortion.distort_F32(true,true); PixelTransform2_F32 distToUndist = new PointToPixelTransform_F32(pointDistToUndist); PixelTransform2_F32 undistToDist = new PointToPixelTransform_F32(pointUndistToDist); if( cache ) { distToUndist = new PixelTransformCached_F32(width, height, distToUndist); undistToDist = new PixelTransformCached_F32(width, height, undistToDist); } squareDetector.setLensDistortion(width, height,distToUndist,undistToDist); pointSquareToInput = new SequencePoint2Transform2_F32(transformHomography,pointUndistToDist); // provide intrinsic camera parameters PixelTransform2_F32 squareToInput= new PointToPixelTransform_F32(pointSquareToInput); removePerspective.setModel(squareToInput); this.undistToDist = distortion.distort_F64(true,true); } private Polygon2D_F64 interpolationHack = new Polygon2D_F64(4); private Quadrilateral_F64 q = new Quadrilateral_F64(); // interpolation hack in quadrilateral format List candidates = new ArrayList<>(); List candidatesInfo = new ArrayList<>(); /** * Examines the input image to detect fiducials inside of it * * @param gray Undistorted input image */ public void process( T gray ) { configureContourDetector(gray); binary.reshape(gray.width,gray.height); inputToBinary.process(gray,binary); squareDetector.process(gray,binary); squareDetector.refineAll(); // These are in undistorted pixels squareDetector.getPolygons(candidates,candidatesInfo); found.reset(); if( verbose ) System.out.println("---------- Got Polygons! "+candidates.size()); for (int i = 0; i < candidates.size(); i++) { // compute the homography from the input image to an undistorted square image Polygon2D_F64 p = candidates.get(i); // System.out.println(i+" processing... "+p.areaSimple()+" at "+p.get(0)); // sanity check before processing if( !checkSideSize(p) ) { if( verbose ) System.out.println(" rejected side aspect ratio or size"); continue; } // REMOVE EVENTUALLY This is a hack around how interpolation is performed // Using a surface integral instead would remove the need for this. Basically by having it start // interpolating from the lower extent it samples inside the image more // A good unit test to see if this hack is no longer needed is to rotate the order of the polygon and // see if it returns the same undistorted image each time double best=Double.MAX_VALUE; for (int j = 0; j < 4; j++) { double found = p.get(0).normSq(); if( found < best ) { best = found; interpolationHack.set(p); } UtilPolygons2D_F64.shiftDown(p); } UtilPolygons2D_F64.convert(interpolationHack,q); // remember, visual clockwise isn't the same as math clockwise, hence // counter clockwise visual to the clockwise quad pairsRemovePerspective.get(0).set(0, 0, q.a.x, q.a.y); pairsRemovePerspective.get(1).set( square.width , 0 , q.b.x , q.b.y ); pairsRemovePerspective.get(2).set( square.width , square.height , q.c.x , q.c.y ); pairsRemovePerspective.get(3).set( 0 , square.height , q.d.x , q.d.y ); if( !computeHomography.process(pairsRemovePerspective,H) ) { if( verbose ) System.out.println(" rejected initial homography"); continue; } // refine homography estimate if( !refineHomography.fitModel(pairsRemovePerspective,H,H_refined) ) { if( verbose ) System.out.println(" rejected refine homography"); continue; } // pass the found homography onto the image transform ConvertDMatrixStruct.convert(H_refined,H_fixed); ConvertFloatType.convert(H_fixed, transformHomography.getModel()); // TODO Improve how perspective is removed // The current method introduces artifacts. If the "square" is larger // than the detected region and bilinear interpolation is used then pixels outside will// influence the // value of pixels inside and shift things over. this is all bad // remove the perspective distortion and process it removePerspective.apply(gray, square); DetectPolygonFromContour.Info info = candidatesInfo.get(i); // see if the black border is actually black if( minimumBorderBlackFraction > 0 ) { double pixelThreshold = (info.edgeInside + info.edgeOutside) / 2; double foundFraction = computeFractionBoundary((float) pixelThreshold); if( foundFraction < minimumBorderBlackFraction ) { if( verbose ) System.out.println(" rejected black border fraction "+foundFraction); continue; } } if( processSquare(square,result,info.edgeInside,info.edgeOutside)) { prepareForOutput(q,result); if( verbose ) System.out.println(" accepted!"); } else { if( verbose ) System.out.println(" rejected process square"); } } } /** * Sanity check the polygon based on the size of its sides to see if it could be a fiducial that can * be decoded */ private boolean checkSideSize( Polygon2D_F64 p ) { double max=0,min=Double.MAX_VALUE; for (int i = 0; i < p.size(); i++) { double l = p.getSideLength(i); max = Math.max(max,l); min = Math.min(min,l); } // See if a side is too small to decode if( min < 10 ) return false; // see if it's under extreme perspective distortion and unlikely to be readable return !(min / max < thresholdSideRatio); } /** * Configures the contour detector based on the image size. Setting a maximum contour and turning off recording * of inner contours and improve speed and reduce the memory foot print significantly. */ private void configureContourDetector(T gray) { // determine the maximum possible size of a square based on image size int maxContourSize = Math.min(gray.width,gray.height)*4; BinaryContourFinder contourFinder = squareDetector.getDetector().getContourFinder(); contourFinder.setMaxContour(maxContourSize); contourFinder.setSaveInnerContour(false); } /** * Computes the fraction of pixels inside the image border which are black * @param pixelThreshold Pixel's less than this value are considered black * @return fraction of border that's black */ protected double computeFractionBoundary( float pixelThreshold ) { // TODO ignore outer pixels from this computation. Will require 8 regions (4 corners + top/bottom + left/right) final int w = square.width; int radius = (int) (w * borderWidthFraction); int innerWidth = w-2*radius; int total = w*w - innerWidth*innerWidth; int count = 0; for (int y = 0; y < radius; y++) { int indexTop = y*w; int indexBottom = (w - radius + y)*w; for (int x = 0; x < w; x++) { if( square.data[indexTop++] < pixelThreshold ) count++; if( square.data[indexBottom++] < pixelThreshold ) count++; } } for (int y = radius; y < w-radius; y++) { int indexLeft = y*w; int indexRight = y*w + w - radius; for (int x = 0; x < radius; x++) { if( square.data[indexLeft++] < pixelThreshold ) count++; if( square.data[indexRight++] < pixelThreshold ) count++; } } return count/(double)total; } /** * Takes the found quadrilateral and the computed 3D information and prepares it for output */ private void prepareForOutput(Quadrilateral_F64 imageShape, Result result) { // the rotation estimate, apply in counter clockwise direction // since result.rotation is a clockwise rotation in the visual sense, which // is CCW on the grid int rotationCCW = (4-result.rotation)%4; for (int j = 0; j < rotationCCW; j++) { rotateCounterClockwise(imageShape); } // save the results for output FoundFiducial f = found.grow(); f.id = result.which; undistToDist.compute(imageShape.a.x, imageShape.a.y, f.distortedPixels.a); undistToDist.compute(imageShape.b.x, imageShape.b.y, f.distortedPixels.b); undistToDist.compute(imageShape.c.x, imageShape.c.y, f.distortedPixels.c); undistToDist.compute(imageShape.d.x, imageShape.d.y, f.distortedPixels.d); } /** * Rotates the corners on the quad */ private void rotateCounterClockwise(Quadrilateral_F64 quad) { Point2D_F64 a = quad.a; Point2D_F64 b = quad.b; Point2D_F64 c = quad.c; Point2D_F64 d = quad.d; quad.a = b; quad.b = c; quad.c = d; quad.d = a; } /** * Returns list of found fiducials */ public FastQueue getFound() { return found; } /** * Processes the detected square and matches it to a known fiducial. Black border * is included. * * @param square Image of the undistorted square * @param result Which target and its orientation was found * @param edgeInside Average pixel value along edge inside * @param edgeOutside Average pixel value along edge outside * @return true if the square matches a known target. */ protected abstract boolean processSquare(GrayF32 square , Result result , double edgeInside , double edgeOutside ); /** * Used to toggle on/off verbose debugging information * @param verbose true for verbose output */ public void setVerbose(boolean verbose) { this.verbose = verbose; } public DetectPolygonBinaryGrayRefine getSquareDetector() { return squareDetector; } public GrayU8 getBinary() { return binary; } public Class getInputType() { return inputType; } public double getBorderWidthFraction() { return borderWidthFraction; } public double getThresholdSideRatio() { return thresholdSideRatio; } public void setThresholdSideRatio(double thresholdSideRatio) { this.thresholdSideRatio = thresholdSideRatio; } public static class Result { int which; // length of one of the sides in world units double lengthSide; // amount of clockwise rotation. Each value = +90 degrees // Just to make things confusion, the rotation is done in the visual clockwise, which // is a counter-clockwise rotation when you look at the actual coordinates int rotation; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy