All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.tracker.meanshift.LikelihoodHistCoupled_PL_U8 Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.tracker.meanshift;

import boofcv.struct.image.GrayU8;
import boofcv.struct.image.Planar;
import georegression.struct.shapes.RectangleLength2D_I32;

/**
 * 

* Creates a histogram in a color image and is used to identify the likelihood of an color being a member * of the original distribution. The histogram is computed in N-dimensional space, where N is the number * of bands in the color image. The number of bins for each band is specified in the constructor. There * is a total of N*numBins elements in the histogram. *

* *

* Design Note:
* The reason operations in {@link boofcv.alg.feature.color.GHistogramFeatureOps} is not used internally is because * those are for histograms stored in double arrays, while this has to use floats/ *

* @author Peter Abeles */ public class LikelihoodHistCoupled_PL_U8 implements PixelLikelihood> { Planar image; // maximum value a pixel can have. int maxPixelValue; // Number of bins for each channel in the histogram int numBins; float hist[] = new float[0]; public LikelihoodHistCoupled_PL_U8(int maxPixelValue, int numBins) { this.maxPixelValue = maxPixelValue+1; this.numBins = numBins; } @Override public void setImage(Planar image) { this.image = image; int histElements = 1; for( int i = 0; i < image.getNumBands(); i++ ) { histElements *= numBins; } if( hist.length != histElements ) { hist = new float[histElements]; } } @Override public boolean isInBounds(int x, int y) { return image.isInBounds(x,y); } @Override public void createModel(RectangleLength2D_I32 target) { for( int y = 0; y < target.height; y++ ) { int index = image.startIndex + (y+target.y0)*image.stride + target.x0; for( int x = 0; x < target.width; x++ , index++ ) { int indexBin = 0; int binStride = 1; for( int i = 0; i < image.getNumBands(); i++ ) { GrayU8 band = image.getBand(i); int value = band.data[index] & 0xFF; int bin = numBins*value/maxPixelValue; indexBin += bin*binStride; binStride *= numBins; } hist[indexBin]++; } } float total = target.width*target.height; for( int i = 0; i < hist.length; i++ ) { hist[i] /= total; } } @Override public float compute(int x, int y) { int index = image.startIndex + y*image.stride + x; int indexBin = 0; int binStride = 1; for( int i = 0; i < image.getNumBands(); i++ ) { GrayU8 band = image.getBand(i); int value = band.data[index] & 0xFF; int bin = numBins*value/maxPixelValue; indexBin += bin*binStride; binStride *= numBins; } return hist[indexBin]; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy