boofcv.alg.tracker.meanshift.LikelihoodHistCoupled_PL_U8 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-recognition Show documentation
Show all versions of boofcv-recognition Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.tracker.meanshift;
import boofcv.struct.image.GrayU8;
import boofcv.struct.image.Planar;
import georegression.struct.shapes.RectangleLength2D_I32;
/**
*
* Creates a histogram in a color image and is used to identify the likelihood of an color being a member
* of the original distribution. The histogram is computed in N-dimensional space, where N is the number
* of bands in the color image. The number of bins for each band is specified in the constructor. There
* is a total of N*numBins elements in the histogram.
*
*
*
* Design Note:
* The reason operations in {@link boofcv.alg.feature.color.GHistogramFeatureOps} is not used internally is because
* those are for histograms stored in double arrays, while this has to use floats/
*
* @author Peter Abeles
*/
public class LikelihoodHistCoupled_PL_U8 implements PixelLikelihood>
{
Planar image;
// maximum value a pixel can have.
int maxPixelValue;
// Number of bins for each channel in the histogram
int numBins;
float hist[] = new float[0];
public LikelihoodHistCoupled_PL_U8(int maxPixelValue, int numBins) {
this.maxPixelValue = maxPixelValue+1;
this.numBins = numBins;
}
@Override
public void setImage(Planar image) {
this.image = image;
int histElements = 1;
for( int i = 0; i < image.getNumBands(); i++ ) {
histElements *= numBins;
}
if( hist.length != histElements ) {
hist = new float[histElements];
}
}
@Override
public boolean isInBounds(int x, int y) {
return image.isInBounds(x,y);
}
@Override
public void createModel(RectangleLength2D_I32 target) {
for( int y = 0; y < target.height; y++ ) {
int index = image.startIndex + (y+target.y0)*image.stride + target.x0;
for( int x = 0; x < target.width; x++ , index++ ) {
int indexBin = 0;
int binStride = 1;
for( int i = 0; i < image.getNumBands(); i++ ) {
GrayU8 band = image.getBand(i);
int value = band.data[index] & 0xFF;
int bin = numBins*value/maxPixelValue;
indexBin += bin*binStride;
binStride *= numBins;
}
hist[indexBin]++;
}
}
float total = target.width*target.height;
for( int i = 0; i < hist.length; i++ ) {
hist[i] /= total;
}
}
@Override
public float compute(int x, int y) {
int index = image.startIndex + y*image.stride + x;
int indexBin = 0;
int binStride = 1;
for( int i = 0; i < image.getNumBands(); i++ ) {
GrayU8 band = image.getBand(i);
int value = band.data[index] & 0xFF;
int bin = numBins*value/maxPixelValue;
indexBin += bin*binStride;
binStride *= numBins;
}
return hist[indexBin];
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy