boofcv.alg.tracker.tld.TldLearning Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-recognition Show documentation
Show all versions of boofcv-recognition Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.tracker.tld;
import boofcv.struct.ImageRectangle;
import boofcv.struct.image.ImageGray;
import georegression.struct.shapes.Rectangle2D_F64;
import org.ddogleg.struct.FastQueue;
import org.ddogleg.struct.GrowQueue_F64;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
/**
* Uses information from the user and from the tracker to update the positive and negative target model for both
* ferns and templates.
*
* @author Peter Abeles
*/
public class TldLearning> {
// Random number generator
private Random rand;
// Detects rectangles: Removes candidates don't match the fern descriptors
private TldFernClassifier fern;
// Detects rectangles: Removes candidates don't match NCC descriptors
private TldTemplateMatching template;
// Detects rectangles: Removes candidates which lack texture
private TldVarianceFilter variance;
private TldDetection detection;
// Storage for sorting of results
private GrowQueue_F64 storageMetric = new GrowQueue_F64();
// regions which need to have their ferns updated
private List fernNegative = new ArrayList<>();
private ImageRectangle targetRegion_I32 = new ImageRectangle();
private TldHelperFunctions helper = new TldHelperFunctions();
private TldParameters config;
/**
* Creates and configures learning
*/
public TldLearning(Random rand, TldParameters config,
TldTemplateMatching template, TldVarianceFilter variance, TldFernClassifier fern,
TldDetection detection ) {
this.rand = rand;
this.config = config;
this.template = template;
this.variance = variance;
this.fern = fern;
this.detection = detection;
}
/**
* Select positive and negative examples based on the region the user's initially selected region. The selected
* region is used as a positive example while all the other regions far away are used as negative examples.
*
* @param targetRegion user selected region
* @param cascadeRegions Set of regions used by the cascade detector
*/
public void initialLearning( Rectangle2D_F64 targetRegion ,
FastQueue cascadeRegions ) {
storageMetric.reset();
fernNegative.clear();
// learn the initial descriptor
TldHelperFunctions.convertRegion(targetRegion, targetRegion_I32);
// select the variance the first time using user selected region
variance.selectThreshold(targetRegion_I32);
// add positive examples
template.addDescriptor(true, targetRegion_I32);
fern.learnFernNoise(true, targetRegion_I32);
// Find all the regions which can be used to learn a negative descriptor
for( int i = 0; i < cascadeRegions.size; i++ ) {
ImageRectangle r = cascadeRegions.get(i);
// see if it passes the variance test
if( !variance.checkVariance(r) )
continue;
// learn features far away from the target region
double overlap = helper.computeOverlap(targetRegion_I32, r);
if( overlap > config.overlapLower )
continue;
fernNegative.add(r);
}
// randomize which regions are used
// Collections.shuffle(fernNegative,rand);
int N = fernNegative.size();//Math.min(config.numNegativeFerns,fernNegative.size());
for( int i = 0; i < N; i++ ) {
fern.learnFern(false, fernNegative.get(i) );
}
// run detection algorithm and if there is an ambiguous solution mark it as not target
detection.detectionCascade(cascadeRegions);
learnAmbiguousNegative(targetRegion);
}
/**
* Updates learning using the latest tracking results.
* @param targetRegion Region selected by the fused tracking
*/
public void updateLearning( Rectangle2D_F64 targetRegion ) {
storageMetric.reset();
// learn the initial descriptor
TldHelperFunctions.convertRegion(targetRegion, targetRegion_I32);
template.addDescriptor(true, targetRegion_I32);
fern.learnFernNoise(true, targetRegion_I32);
// mark only a few of the far away regions as negative. Marking all of them as negative is
// computationally expensive
FastQueue ferns = detection.getFernInfo();
int N = Math.min(config.numNegativeFerns,ferns.size);
for( int i = 0; i < N; i++ ) {
int index = rand.nextInt(ferns.size);
TldRegionFernInfo f = ferns.get(index);
// no need to check variance here since the detector already did it
// learn features far away from the target region
double overlap = helper.computeOverlap(targetRegion_I32, f.r);
if( overlap > config.overlapLower )
continue;
fern.learnFern(false, f.r );
}
learnAmbiguousNegative(targetRegion);
}
/**
* Mark regions which were local maximums and had high confidence as negative. These regions were
* candidates for the tracker but were not selected
*/
protected void learnAmbiguousNegative(Rectangle2D_F64 targetRegion) {
TldHelperFunctions.convertRegion(targetRegion, targetRegion_I32);
if( detection.isSuccess() ) {
TldRegion best = detection.getBest();
// see if it found the correct solution
double overlap = helper.computeOverlap(best.rect,targetRegion_I32);
if( overlap <= config.overlapLower ) {
template.addDescriptor(false,best.rect);
// fern.learnFernNoise(false, best.rect );
}
// mark all ambiguous regions as bad
List ambiguous = detection.getAmbiguousRegions();
for( ImageRectangle r : ambiguous ) {
overlap = helper.computeOverlap(r,targetRegion_I32);
if( overlap <= config.overlapLower ) {
fern.learnFernNoise(false, r );
template.addDescriptor(false,r);
}
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy