All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.deepboof.BaseImageClassifier Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.6
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.deepboof;

import boofcv.abst.scene.ImageClassifier;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.ImageType;
import boofcv.struct.image.Planar;
import deepboof.Function;
import deepboof.graph.FunctionSequence;
import deepboof.tensors.Tensor_F32;
import org.ddogleg.struct.DogArray;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

/**
 * Base class for ImageClassifiers which implements common elements
 *
 * @author Peter Abeles
 */
@SuppressWarnings({"NullAway.Init"})
public abstract class BaseImageClassifier implements ImageClassifier> {

	protected FunctionSequence> network;

	// List of all the categories
	protected List categories = new ArrayList<>();

	protected ImageType> imageType = ImageType.pl(3, GrayF32.class);

	// Resizes input image for the network
	protected ClipAndReduce> massage = new ClipAndReduce<>(true, imageType);

	// size of square image
	protected int imageSize;

	//  Input image adjusted to network input size
	protected Planar imageRgb;

	// Storage for the tensor into the image
	protected Tensor_F32 tensorInput;
	protected Tensor_F32 tensorOutput;

	// storage for the final output
	protected DogArray categoryScores = new DogArray<>(Score::new);
	protected int categoryBest;

	Comparator comparator = ( o1, o2 ) -> Double.compare(o2.score, o1.score);

	protected BaseImageClassifier( int imageSize ) {
		this.imageSize = imageSize;
		imageRgb = new Planar<>(GrayF32.class, imageSize, imageSize, 3);
		tensorInput = new Tensor_F32(1, 3, imageSize, imageSize);
	}

	@Override
	public ImageType> getInputType() {
		return imageType;
	}

	/**
	 * The original implementation takes in an image then crops it randomly. This is primarily for training but is
	 * replicated here to reduce the number of differences
	 *
	 * @param image Image being processed. Must be RGB image. Pixel values must have values from 0 to 255.
	 */
	@Override
	public void classify( Planar image ) {
		DataManipulationOps.imageToTensor(preprocess(image), tensorInput, 0);
		innerProcess(tensorInput);
	}

	/**
	 * Massage the input image into a format recognized by the network
	 */
	protected Planar preprocess( Planar image ) {
		// Shrink the image to input size
		if (image.width == imageSize && image.height == imageSize) {
			this.imageRgb.setTo(image);
		} else if (image.width < imageSize || image.height < imageSize) {
			throw new IllegalArgumentException("Image width or height is too small");
		} else {
			massage.massage(image, imageRgb);
		}
		return imageRgb;
	}

	protected void innerProcess( Tensor_F32 tensorInput ) {
		// process the tensor
		network.process(tensorInput, tensorOutput);

		// now find the best score and sort them
		categoryScores.reset();
		double scoreBest = -Double.MAX_VALUE;
		categoryBest = -1;
		for (int category = 0; category < tensorOutput.length(1); category++) {
			double score = tensorOutput.get(0, category);
			categoryScores.grow().set(score, category);
			if (score > scoreBest) {
				scoreBest = score;
				categoryBest = category;
			}
		}

		// order the categories by most to least likely
		Collections.sort(categoryScores.toList(), comparator);
	}

	@Override
	public int getBestResult() {
		return categoryBest;
	}

	@Override
	public List getAllResults() {
		return categoryScores.toList();
	}

	@Override
	public List getCategories() {
		return categories;
	}

	public Planar getImageRgb() {
		return imageRgb;
	}
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy