boofcv.deepboof.BaseImageClassifier Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-recognition Show documentation
Show all versions of boofcv-recognition Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.deepboof;
import boofcv.abst.scene.ImageClassifier;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.ImageType;
import boofcv.struct.image.Planar;
import deepboof.Function;
import deepboof.graph.FunctionSequence;
import deepboof.tensors.Tensor_F32;
import org.ddogleg.struct.DogArray;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
/**
* Base class for ImageClassifiers which implements common elements
*
* @author Peter Abeles
*/
@SuppressWarnings({"NullAway.Init"})
public abstract class BaseImageClassifier implements ImageClassifier> {
protected FunctionSequence> network;
// List of all the categories
protected List categories = new ArrayList<>();
protected ImageType> imageType = ImageType.pl(3, GrayF32.class);
// Resizes input image for the network
protected ClipAndReduce> massage = new ClipAndReduce<>(true, imageType);
// size of square image
protected int imageSize;
// Input image adjusted to network input size
protected Planar imageRgb;
// Storage for the tensor into the image
protected Tensor_F32 tensorInput;
protected Tensor_F32 tensorOutput;
// storage for the final output
protected DogArray categoryScores = new DogArray<>(Score::new);
protected int categoryBest;
Comparator comparator = ( o1, o2 ) -> Double.compare(o2.score, o1.score);
protected BaseImageClassifier( int imageSize ) {
this.imageSize = imageSize;
imageRgb = new Planar<>(GrayF32.class, imageSize, imageSize, 3);
tensorInput = new Tensor_F32(1, 3, imageSize, imageSize);
}
@Override
public ImageType> getInputType() {
return imageType;
}
/**
* The original implementation takes in an image then crops it randomly. This is primarily for training but is
* replicated here to reduce the number of differences
*
* @param image Image being processed. Must be RGB image. Pixel values must have values from 0 to 255.
*/
@Override
public void classify( Planar image ) {
DataManipulationOps.imageToTensor(preprocess(image), tensorInput, 0);
innerProcess(tensorInput);
}
/**
* Massage the input image into a format recognized by the network
*/
protected Planar preprocess( Planar image ) {
// Shrink the image to input size
if (image.width == imageSize && image.height == imageSize) {
this.imageRgb.setTo(image);
} else if (image.width < imageSize || image.height < imageSize) {
throw new IllegalArgumentException("Image width or height is too small");
} else {
massage.massage(image, imageRgb);
}
return imageRgb;
}
protected void innerProcess( Tensor_F32 tensorInput ) {
// process the tensor
network.process(tensorInput, tensorOutput);
// now find the best score and sort them
categoryScores.reset();
double scoreBest = -Double.MAX_VALUE;
categoryBest = -1;
for (int category = 0; category < tensorOutput.length(1); category++) {
double score = tensorOutput.get(0, category);
categoryScores.grow().set(score, category);
if (score > scoreBest) {
scoreBest = score;
categoryBest = category;
}
}
// order the categories by most to least likely
Collections.sort(categoryScores.toList(), comparator);
}
@Override
public int getBestResult() {
return categoryBest;
}
@Override
public List getAllResults() {
return categoryScores.toList();
}
@Override
public List getCategories() {
return categories;
}
public Planar getImageRgb() {
return imageRgb;
}
}