All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.fiducial.calib.circle.DetectCircleHexagonalGrid Maven / Gradle / Ivy

/*
 * Copyright (c) 2022, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.fiducial.calib.circle;

import boofcv.abst.filter.binary.InputToBinary;
import boofcv.alg.fiducial.calib.circle.EllipseClustersIntoGrid.Grid;
import boofcv.alg.shapes.ellipse.BinaryEllipseDetector;
import boofcv.alg.shapes.ellipse.BinaryEllipseDetectorPixel;
import boofcv.struct.ConfigLength;
import boofcv.struct.image.ImageGray;
import georegression.struct.curve.EllipseRotated_F64;

/**
 * 

Detects a hexagonal circle grid. Circles are spaced such that center of each circle is the same distance from * each of its five neighbors. Rows and columns are counted in a zig-zag pattern, see example below. When there * is symmetric ambiguity the canonical orientation is used.

* *

Canonical orientation is defined as having the rows/columns matched, element (0,0) being occupied. * If there are multiple solution a solution will be selected which is in counter-clockwise order (image coordinates) * and if there is still ambiguity the ellipse closest to the image origin will be selected as (0,0).

* *

* For each circle there is one control point. The control point is first found by detecting all the ellipses, which * is what a circle appears to be under perspective distortion. The center the ellipse might not match the physical * center of the circle. The intersection of lines does not change under perspective distortion. The outer common * tangent lines between neighboring ellipses are found. Then the intersection of two such lines is found. This * intersection will be the physical center of the circle. *

* *
* *
* Example of a 24 by 28 grid; row, column. * * @author Peter Abeles * @see KeyPointsCircleHexagonalGrid */ public class DetectCircleHexagonalGrid> extends DetectCircleGrid { /** * Creates and configures the detector * * @param numRows number of rows in grid * @param numCols number of columns in grid * @param inputToBinary Converts the input image into a binary image * @param ellipseDetector Detects ellipses inside the image * @param clustering Finds clusters of ellipses */ public DetectCircleHexagonalGrid( int numRows, int numCols, InputToBinary inputToBinary, BinaryEllipseDetector ellipseDetector, EllipsesIntoClusters clustering ) { super(numRows, numCols, inputToBinary, ellipseDetector, clustering, new EllipseClustersIntoHexagonalGrid()); } @Override protected void configureContourDetector( T gray ) { // overestimate for multiple reasons. Doesn't take in account space and distance between touching circles // isn't correct int diameter = Math.max(gray.width, gray.height)/Math.max(numCols, numRows); BinaryEllipseDetectorPixel binaryDetector = ellipseDetector.getEllipseDetector(); binaryDetector.setMaximumContour(ConfigLength.fixed((Math.PI*diameter*3) + 1)); binaryDetector.setInternalContour(false); } @Override public int totalEllipses( int numRows, int numCols ) { return numRows/2*(numCols/2) + (numRows + 1)/2*((numCols + 1)/2); } /** * Puts the grid into a canonical orientation */ @Override protected void putGridIntoCanonical( Grid g ) { // first put it into a plausible solution if (g.columns != numCols) { rotateGridCCW(g); } if (g.get(0, 0) == null) { reverse(g); } // select the best corner for canonical if (g.columns%2 == 1 && g.rows%2 == 1) { // first make sure orientation constraint is maintained if (isClockWise(g)) { flipHorizontal(g); } int numRotationsCCW = closestCorner4(g); if (g.columns == g.rows) { for (int i = 0; i < numRotationsCCW; i++) { rotateGridCCW(g); } } else if (numRotationsCCW == 2) { // only two valid solutions. rotate only if the other valid solution is better rotateGridCCW(g); rotateGridCCW(g); } } else if (g.columns%2 == 1) { // only two solutions. Go with the one which maintains orientation constraint if (isClockWise(g)) { flipHorizontal(g); } } else if (g.rows%2 == 1) { // only two solutions. Go with the one which maintains orientation constraint if (isClockWise(g)) { flipVertical(g); } } } /** * Uses the cross product to determine if the grid is in clockwise order */ private static boolean isClockWise( Grid g ) { EllipseRotated_F64 v00 = g.get(0, 0); EllipseRotated_F64 v02 = g.columns < 3 ? g.get(1, 1) : g.get(0, 2); EllipseRotated_F64 v20 = g.rows < 3 ? g.get(1, 1) : g.get(2, 0); double a_x = v02.center.x - v00.center.x; double a_y = v02.center.y - v00.center.y; double b_x = v20.center.x - v00.center.x; double b_y = v20.center.y - v00.center.y; return a_x*b_y - a_y*b_x < 0; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy