All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.abst.fiducial.FiducialDetectorPnP Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

The newest version!
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.abst.fiducial;

import boofcv.abst.geo.Estimate1ofPnP;
import boofcv.abst.geo.RefinePnP;
import boofcv.alg.distort.LensDistortionNarrowFOV;
import boofcv.alg.geo.WorldToCameraToPixel;
import boofcv.factory.geo.FactoryMultiView;
import boofcv.struct.distort.Point2Transform2_F64;
import boofcv.struct.geo.Point2D3D;
import boofcv.struct.geo.PointIndex2D_F64;
import boofcv.struct.image.ImageBase;
import georegression.struct.point.Point2D_F64;
import georegression.struct.se.Se3_F64;
import org.ddogleg.struct.DogArray_F64;
import org.jetbrains.annotations.Nullable;

import java.util.ArrayList;
import java.util.List;
import java.util.Objects;

/**
 * 

Provides everything you need to convert a image based fiducial detector into one which can estimate * the fiducial's pose given control points. The camera pose is found using a solution to the Pose-N-Point (PnP) * problem.

* *

Stability is computed by perturbing each control point by the user provided amount of disturbance. The largest * delta for location and orientation is then found and saved.

* * @author Peter Abeles */ @SuppressWarnings({"NullAway.Init"}) public abstract class FiducialDetectorPnP> implements FiducialDetector { private @Nullable LensDistortionNarrowFOV lensDistortion; // transform to remove lens distortion protected @Nullable Point2Transform2_F64 pixelToNorm; // 2D-3D pairs for just the detected points private List detected2D3D = new ArrayList<>(); // list of the pixel observations for the most recently requested fiducial private List detectedPixels; // if a lens distortion model was set or not boolean hasCameraModel = false; // non-linear refinement of pose estimate private Estimate1ofPnP estimatePnP = FactoryMultiView.computePnPwithEPnP(10, 0.2); // private Estimate1ofPnP estimatePnP = FactoryMultiView.pnp_1(EnumPNP.IPPE,0,0); private RefinePnP refinePnP = FactoryMultiView.pnpRefine(1e-8, 100); private WorldToCameraToPixel w2p = new WorldToCameraToPixel(); // when computing the pose, this is the initial estimate before non-linear refinement private Se3_F64 initialEstimate = new Se3_F64(); // Work space for computing stability private FourPointSyntheticStability stability = new FourPointSyntheticStability(); private Se3_F64 targetToCamera = new Se3_F64(); // workspace for pose estimation DogArray_F64 errors = new DogArray_F64(); Point2D_F64 predicted = new Point2D_F64(); List filtered = new ArrayList<>(); /** * Width of the fiducial. used to compute stability * * @param which specifies which fiducial * @return the width */ public abstract double getSideWidth( int which ); /** * Height of the fiducial. used to compute stability * * @param which specifies which fiducial * @return the height */ public abstract double getSideHeight( int which ); /** * Estimates the stability by perturbing each land mark by the specified number of pixels in the distorted image. */ @Override public boolean computeStability( int which, double disturbance, FiducialStability results ) { if (!getFiducialToCamera(which, targetToCamera)) return false; stability.setShape(getSideWidth(which), getSideHeight(which)); stability.computeStability(targetToCamera, disturbance, results); return true; } @Override public void setLensDistortion( @Nullable LensDistortionNarrowFOV distortion, int width, int height ) { if (distortion != null) { this.hasCameraModel = true; this.lensDistortion = distortion; this.pixelToNorm = lensDistortion.undistort_F64(true, false); Point2Transform2_F64 normToPixel = lensDistortion.distort_F64(false, true); stability.setTransforms(pixelToNorm, normToPixel); } else { this.hasCameraModel = false; this.lensDistortion = null; this.pixelToNorm = null; } } @Override public @Nullable LensDistortionNarrowFOV getLensDistortion() { return lensDistortion; } @Override public boolean getFiducialToCamera( int which, Se3_F64 fiducialToCamera ) { if (!hasCameraModel) return false; detectedPixels = getDetectedControl(which); if (detectedPixels.size() < 3) return false; // 2D-3D point associations createDetectedList(which, detectedPixels); return estimatePose(which, detected2D3D, fiducialToCamera); } /** * Create the list of observed points in 2D3D */ private void createDetectedList( int which, List pixels ) { Objects.requireNonNull(pixelToNorm); detected2D3D.clear(); List all = getControl3D(which); for (int i = 0; i < pixels.size(); i++) { Point2D_F64 a = pixels.get(i).p; Point2D3D b = all.get(i); pixelToNorm.compute(a.x, a.y, b.observation); detected2D3D.add(b); } } /** * Given the mapping of 2D observations to known 3D points estimate the pose of the fiducial. * This solves the P-n-P problem. * * Do a simple form of robust estimation. Prune points which are greater than 3 standard deviations * and likely noise the recompute the pose */ protected boolean estimatePose( int which, List points, Se3_F64 fiducialToCamera ) { if (!estimatePnP.process(points, initialEstimate)) { return false; } filtered.clear(); // Don't bother if there are hardly any points to work with if (points.size() > 6) { w2p.configure(Objects.requireNonNull(lensDistortion), initialEstimate); // compute the error for each point in image pixels errors.reset(); for (int idx = 0; idx < detectedPixels.size(); idx++) { PointIndex2D_F64 dp = detectedPixels.get(idx); w2p.transform(points.get(idx).location, predicted); errors.add(predicted.distance2(dp.p)); } // compute the prune threshold based on the standard deviation. well variance really double stdev = 0; for (int i = 0; i < errors.size; i++) { stdev += errors.get(i); } // prune points 3 standard deviations away // Don't prune if 3 standard deviations is less than 1.5 pixels since that's about what // you would expect and you might make the solution worse double sigma3 = Math.max(1.5, 4*stdev); for (int i = 0; i < points.size(); i++) { if (errors.get(i) < sigma3) { filtered.add(points.get(i)); } } // recompute pose esitmate without the outliers if (filtered.size() != points.size()) { if (!estimatePnP.process(filtered, initialEstimate)) { return false; } } } else { filtered.addAll(points); } return refinePnP.fitModel(points, initialEstimate, fiducialToCamera); } /** * Returns a list of detected control points in the image for the specified fiducial. Observations * will be in distorted image pixels. */ public abstract List getDetectedControl( int which ); /** * 3D location of control points in the fiducial reference frame * * @return 3D location of control points */ protected abstract List getControl3D( int which ); @Override public boolean is3D() { return hasCameraModel; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy