boofcv.abst.fiducial.calib.CalibrationDetectorChessboardX Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-recognition Show documentation
Show all versions of boofcv-recognition Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
The newest version!
/*
* Copyright (c) 2022, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.fiducial.calib;
import boofcv.abst.geo.calibration.DetectSingleFiducialCalibration;
import boofcv.alg.distort.LensDistortionNarrowFOV;
import boofcv.alg.feature.detect.chess.DetectChessboardCornersXPyramid;
import boofcv.alg.fiducial.calib.chess.ChessboardCornerClusterFinder;
import boofcv.alg.fiducial.calib.chess.ChessboardCornerClusterToGrid;
import boofcv.alg.fiducial.calib.chess.ChessboardCornerClusterToGrid.GridInfo;
import boofcv.alg.fiducial.calib.chess.DetectChessboardXCornerPatterns;
import boofcv.alg.geo.calibration.CalibrationObservation;
import boofcv.struct.distort.Point2Transform2_F64;
import boofcv.struct.image.GrayF32;
import georegression.struct.point.Point2D_F64;
import lombok.Getter;
import org.ddogleg.struct.DogArray;
import org.jetbrains.annotations.Nullable;
import java.util.ArrayList;
import java.util.List;
/**
* Detector for chessboard calibration targets which searches for X-Corners.
* Returns the first chessboard which is detected and matches the expected size is returned.
*
* @author Peter Abeles
*/
@SuppressWarnings({"NullAway.Init"})
public class CalibrationDetectorChessboardX implements DetectSingleFiducialCalibration {
@Getter int cornerRows, cornerCols;
@Getter DetectChessboardXCornerPatterns detectorX;
// transform from input pixels to undistorted pixels
@Nullable Point2Transform2_F64 pixel2undist;
List layoutPoints;
CalibrationObservation detected;
public CalibrationDetectorChessboardX( ConfigChessboardX config, ConfigGridDimen shape ) {
detectorX = new DetectChessboardXCornerPatterns<>(config, GrayF32.class);
cornerRows = shape.numRows - 1;
cornerCols = shape.numCols - 1;
layoutPoints = gridChess(shape.numRows, shape.numCols, shape.shapeSize);
detectorX.getClusterToGrid().setCheckShape(( r, c ) -> r == cornerRows && c == cornerCols);
}
@Override
public boolean process( GrayF32 input ) {
detectorX.findPatterns(input);
DogArray found = detectorX.getFoundChessboard();
if (found.size >= 1) {
detected = new CalibrationObservation();
GridInfo info = found.get(0);
for (int i = 0; i < info.nodes.size(); i++) {
detected.add(i, info.nodes.get(i).corner);
}
// remove lens distortion
if (pixel2undist != null) {
for (int i = 0; i < info.nodes.size(); i++) {
Point2D_F64 p = detected.points.get(i).p;
pixel2undist.compute(p.x, p.y, p);
}
}
return true;
} else {
detected = new CalibrationObservation();
return false;
}
}
@Override public CalibrationObservation getDetectedPoints() {
return detected;
}
@Override public List getLayout() {
return layoutPoints;
}
@Override
public void setLensDistortion( @Nullable LensDistortionNarrowFOV distortion, int width, int height ) {
if (distortion == null)
pixel2undist = null;
else {
pixel2undist = distortion.undistort_F64(true, true);
}
}
public DetectChessboardCornersXPyramid getDetector() {
return detectorX.getDetector();
}
public ChessboardCornerClusterFinder getClusterFinder() {
return detectorX.getClusterFinder();
}
public ChessboardCornerClusterToGrid getClusterToGrid() {
return detectorX.getClusterToGrid();
}
/**
* This target is composed of a checkered chess board like squares. Each corner of an interior square
* touches an adjacent square, but the sides are separated. Only interior square corners provide
* calibration points.
*
* @param numRows Number of grid rows in the calibration target
* @param numCols Number of grid columns in the calibration target
* @param squareWidth How wide each square is. Units are target dependent.
* @return Target description
*/
public static List gridChess( int numRows, int numCols, double squareWidth ) {
List all = new ArrayList<>();
// convert it into the number of calibration points
numCols = numCols - 1;
numRows = numRows - 1;
// center the grid around the origin. length of a size divided by two
double startX = -((numCols - 1)*squareWidth)/2.0;
double startY = -((numRows - 1)*squareWidth)/2.0;
for (int i = numRows - 1; i >= 0; i--) {
double y = startY + i*squareWidth;
for (int j = 0; j < numCols; j++) {
double x = startX + j*squareWidth;
all.add(new Point2D_F64(x, y));
}
}
return all;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy