/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.scene.ann;
import boofcv.abst.scene.FeatureSceneRecognition;
import boofcv.abst.scene.SceneRecognition;
import boofcv.alg.scene.ann.RecognitionNearestNeighborInvertedFile;
import boofcv.alg.scene.bow.BowMatch;
import boofcv.factory.feature.associate.FactoryAssociation;
import boofcv.factory.struct.FactoryTupleDesc;
import boofcv.misc.BoofLambdas;
import boofcv.misc.BoofMiscOps;
import boofcv.struct.PackedArray;
import boofcv.struct.feature.TupleDesc;
import boofcv.struct.kmeans.FactoryTupleCluster;
import lombok.Getter;
import lombok.Setter;
import org.ddogleg.clustering.kmeans.StandardKMeans;
import org.ddogleg.nn.FactoryNearestNeighbor;
import org.ddogleg.nn.NearestNeighbor;
import org.ddogleg.struct.DogArray;
import org.ddogleg.struct.DogArray_I32;
import org.ddogleg.struct.Factory;
import org.jetbrains.annotations.Nullable;
import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Set;
/**
* Wrapper around {@link RecognitionNearestNeighborInvertedFile} for {@link FeatureSceneRecognition}.
*
* @author Peter Abeles
*/
@SuppressWarnings({"NullAway.Init"})
public class FeatureSceneRecognitionNearestNeighbor> implements FeatureSceneRecognition | {
/** Configuration */
@Getter ConfigRecognitionNearestNeighbor config;
/** Model for the words */
@Getter NearestNeighbor | nearestNeighbor;
/** BOW algorithm and storage for image database */
@Getter RecognitionNearestNeighborInvertedFile | database;
/** List of all the words */
@Getter List | dictionary = new ArrayList<>();
/** Stores features found in one image */
@Getter @Setter DogArray | imageFeatures;
/** List of all the images in the dataset */
@Getter List imageIds = new ArrayList<>();
/** Performance tuning. If less than this number of features a single thread algorithm will be used */
@Getter @Setter public int minimumForThread = 500; // This value has not been proven to be optimal
// Internal Profiling. All times in milliseconds
@Getter long timeLearnDescribeMS;
@Getter long timeLearnClusterMS;
// Describes how to store the feature descriptor
@Getter Class tupleType;
@Getter int tupleDOF;
// If not null then print verbose information
@Nullable PrintStream verbose;
public FeatureSceneRecognitionNearestNeighbor( ConfigRecognitionNearestNeighbor config, Factory | factory ) {
this.config = config;
this.imageFeatures = new DogArray<>(factory);
this.database = new RecognitionNearestNeighborInvertedFile<>();
database.setDistanceType(config.distanceNorm);
tupleDOF = imageFeatures.grow().size();
tupleType = (Class)imageFeatures.get(0).getClass();
}
@Override public void learnModel( Iterator> images ) {
PackedArray packedFeatures = FactoryTupleDesc.createPackedBig(tupleDOF, tupleType);
// Keep track of where features from one image begins/ends
DogArray_I32 startIndex = new DogArray_I32();
// Detect features in all the images and save into a single array
long time0 = System.currentTimeMillis();
while (images.hasNext()) {
Features | image = images.next();
startIndex.add(packedFeatures.size());
int N = image.size();
packedFeatures.reserve(N);
for (int i = 0; i < N; i++) {
packedFeatures.append(image.getDescription(i));
}
if (verbose != null)
verbose.println("described.size=" + startIndex.size + " features=" + N + " packed.size=" + packedFeatures.size());
}
startIndex.add(packedFeatures.size());
if (verbose != null) verbose.println("packedFeatures.size=" + packedFeatures.size());
long time1 = System.currentTimeMillis();
timeLearnDescribeMS = time1 - time0;
// Learn the words by clustering. This could take a while
StandardKMeans | clustering = FactoryTupleCluster.kmeans(config.kmeans, minimumForThread, tupleDOF, tupleType);
if (verbose != null) clustering.setVerbose(true);
clustering.initialize(config.randSeed);
clustering.process(packedFeatures, config.numberOfWords);
long time2 = System.currentTimeMillis();
timeLearnClusterMS = time2 - time1;
// The dictionary is now defined. Initialize the dataset
setDictionary(clustering.getBestClusters().toList());
}
@Override public void clearDatabase() {
imageIds.clear();
database.clearImages();
}
@Override public void addImage( String id, Features | features ) {
// Copy image features into an array
imageFeatures.resize(features.size());
for (int i = 0; i < imageFeatures.size; i++) {
imageFeatures.get(i).setTo(features.getDescription(i));
}
// Save the ID and convert into a format the database understands
int imageIndex = imageIds.size();
imageIds.add(id);
if (verbose != null)
verbose.println("added[" + imageIndex + "].size=" + features.size() + " id=" + id);
// Add the image
database.addImage(imageIndex, imageFeatures.toList());
}
@Override public List getImageIds( @Nullable List storage ) {
if (storage == null)
storage = new ArrayList<>();
else
storage.clear();
storage.addAll(imageIds);
return storage;
}
@Override
public boolean query( Features query,
BoofLambdas.@Nullable Filter filter, int limit,
DogArray matches ) {
// Default is no matches
matches.resize(0);
// Handle the case where the limit is unlimited
limit = limit <= 0 ? Integer.MAX_VALUE : limit;
// Detect image features then copy features into an array
imageFeatures.resize(query.size());
for (int i = 0; i < imageFeatures.size; i++) {
imageFeatures.get(i).setTo(query.getDescription(i));
}
// Wrap the user provided filter by converting the int ID into a String ID
BoofLambdas.FilterInt filterInt = filter == null ? null : ( index ) -> filter.keep(imageIds.get(index));
// Look up the closest matches
if (!database.query(imageFeatures.toList(), filterInt, limit))
return false;
DogArray found = database.getMatches();
if (verbose != null) verbose.println("matches.size=" + found.size + " best.error=" + found.get(0).error);
// Copy results into output format
matches.resize(found.size);
for (int i = 0; i < matches.size; i++) {
BowMatch f = found.get(i);
matches.get(i).id = imageIds.get(f.identification);
matches.get(i).error = f.error;
}
return !matches.isEmpty();
}
/**
* Replaces the old dictionary with the new dictionary.
*
* @param dictionary Dictionary of words
*/
public void setDictionary( List dictionary ) {
clearDatabase();
this.dictionary = dictionary;
NearestNeighbor | nearestNeighbor = FactoryNearestNeighbor.generic(config.nearestNeighbor,
FactoryAssociation.kdtreeDistance(tupleDOF, tupleType));
nearestNeighbor.setPoints(dictionary, true);
database.initialize(nearestNeighbor, dictionary.size());
}
@Override public int getQueryWord( int featureIdx ) {
return database.observedWords.get(featureIdx);
}
@Override public void getQueryWords( int featureIdx, DogArray_I32 words ) {
words.reset();
words.add(database.observedWords.get(featureIdx));
}
@Override public int lookupWord( TD description ) {
database.search.findNearest(description, -1, database.searchResult);
return database.searchResult.index;
}
@Override public void lookupWords( TD description, DogArray_I32 words ) {
words.reset();
words.add(lookupWord(description));
}
@Override public int getTotalWords() {
return config.numberOfWords;
}
@Override public Class | getDescriptorType() {
return tupleType;
}
@Override public void setVerbose( @Nullable PrintStream out, @Nullable Set config ) {
this.verbose = BoofMiscOps.addPrefix(this, out);
}
}
| | | | |