All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.fiducial.calib.squares.SquaresIntoRegularClusters Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

The newest version!
/*
 * Copyright (c) 2022, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.fiducial.calib.squares;

import georegression.geometry.UtilLine2D_F64;
import georegression.metric.Distance2D_F64;
import georegression.struct.line.LineGeneral2D_F64;
import georegression.struct.line.LineSegment2D_F64;
import georegression.struct.point.Point2D_F64;
import georegression.struct.shapes.Polygon2D_F64;
import org.ddogleg.nn.FactoryNearestNeighbor;
import org.ddogleg.nn.NearestNeighbor;
import org.ddogleg.nn.NnData;
import org.ddogleg.struct.DogArray;

import java.util.ArrayList;
import java.util.List;

/**
 * Processes the detected squares in the image and connects them into clusters. Squares can be connected to each
 * other if two equivalent sides are parallel and their distance apart is "reasonable". The parallel requirement
 * take advantage of line under perspective distortion remaining parallel.
 *
 * @author Peter Abeles
 */
public class SquaresIntoRegularClusters extends SquaresIntoClusters {

	// maximum neighbors on nearest-neighbor search
	public int maxNeighbors;

	// tolerance for fractional distance away a point can be from a line to be considered on the line
	double distanceTol = 0.2;

	// maximum distance two squares can be from each other relative to the size of a square
	double maxNeighborDistanceRatio;

	// ratio of the length of a square to the distance separating the square
	private double spaceToSquareRatio;

	protected SquareGraph graph = new SquareGraph();

	// Storage for line segments used to calculate center
	private LineGeneral2D_F64 line = new LineGeneral2D_F64();

	protected LineSegment2D_F64 lineA = new LineSegment2D_F64();
	protected LineSegment2D_F64 lineB = new LineSegment2D_F64();
	protected LineSegment2D_F64 connectLine = new LineSegment2D_F64();
	private Point2D_F64 intersection = new Point2D_F64();

	// used to search for neighbors that which are candidates for connecting
	private NearestNeighbor nn = FactoryNearestNeighbor.kdtree(new SquareNode.KdTreeSquareNode());
	private NearestNeighbor.Search search = nn.createSearch();
	private DogArray> searchResults = new DogArray(NnData::new);

	/**
	 * Declares data structures and configures algorithm
	 *
	 * @param spaceToSquareRatio Ratio of space between squares to square lengths
	 * @param maxNeighbors The maximum number of neighbors it will look at when connecting a node
	 * @param maxNeighborDistanceRatio Maximum distance away a neighbor can be from a square to be connected. Relative
	 * to the size of the square. Try 1.35
	 */
	public SquaresIntoRegularClusters( double spaceToSquareRatio, int maxNeighbors, double maxNeighborDistanceRatio ) {
		this.spaceToSquareRatio = spaceToSquareRatio;
		this.maxNeighbors = maxNeighbors;
		//  avoid a roll over later on in the code
		if (this.maxNeighbors == Integer.MAX_VALUE) {
			this.maxNeighbors = Integer.MAX_VALUE - 1;
		}
		this.maxNeighborDistanceRatio = maxNeighborDistanceRatio;
	}

	/**
	 * Processes the unordered set of squares and creates a graph out of them using prior knowledge and geometric
	 * constraints.
	 *
	 * @param squares Set of squares
	 * @return List of graphs. All data structures are recycled on the next call to process().
	 */
	public List> process( List squares ) {
		recycleData();

		// set up nodes
		computeNodeInfo(squares);

		// Connect nodes to each other
		connectNodes();

		// Prune noise
		disconnectSingleConnections();

		// Find all valid graphs
		findClusters();
		return clusters.toList();
	}

	void computeNodeInfo( List squares ) {
		for (int i = 0; i < squares.size(); i++) {
			SquareNode n = nodes.grow();
			n.reset();
			n.square = squares.get(i);

			if (n.square.size() != 4)
				throw new RuntimeException("Squares have four corners not " + n.square.size());

			SquareGraph.computeNodeInfo(n);
		}
	}

	/**
	 * Goes through each node and uses a nearest-neighbor search to find the closest nodes in its local neighborhood.
	 * It then checks those to see if it should connect
	 */
	void connectNodes() {
		setupSearch();

		for (int i = 0; i < nodes.size(); i++) {
			SquareNode n = nodes.get(i);


			// distance between center when viewed head on will be space + 0.5*2*width.
			// when you factor in foreshortening this search will not be symmetric
			// the smaller will miss its larger neighbor but the larger one will find the smaller one.
			double neighborDistance = n.largestSide*(1.0 + spaceToSquareRatio)*maxNeighborDistanceRatio;

			// find it's neighbors
			searchResults.reset();
			search.findNearest(n, neighborDistance*neighborDistance, maxNeighbors + 1, searchResults);

			// try to attach it's closest neighbors
			for (int j = 0; j < searchResults.size(); j++) {
				NnData neighbor = searchResults.get(j);
				if (neighbor.point != n)
					considerConnect(n, neighbor.point);
			}
		}
	}

	/**
	 * Nodes that have only a single connection to one other node are disconnected since they are likely to be noise.
	 * This is done recursively
	 */
	void disconnectSingleConnections() {

		List open = new ArrayList<>();
		List open2 = new ArrayList<>();

		for (int i = 0; i < nodes.size(); i++) {
			SquareNode n = nodes.get(i);
			checkDisconnectSingleEdge(open, n);
		}


		while (!open.isEmpty()) {
			for (int i = 0; i < open.size(); i++) {
				SquareNode n = open.get(i);
				checkDisconnectSingleEdge(open2, n);

				open.clear();
				List tmp = open;
				open = open2;
				open2 = tmp;
			}
		}
	}

	private void checkDisconnectSingleEdge( List open, SquareNode n ) {
		if (n.getNumberOfConnections() == 1) {
			for (int j = 0; j < n.square.size(); j++) {
				if (n.edges[j] != null) {
					open.add(n.edges[j].destination(n));
					graph.detachEdge(n.edges[j]);
					break;
				}
			}
		}
	}

	/**
	 * Sets up data structures for nearest-neighbor search used in {@link #connectNodes()}
	 */
	private void setupSearch() {
		nn.setPoints(nodes.toList(), false);
	}

	/**
	 * Returns true if point p1 and p2 are close to the line defined by points p0 and p3.
	 */
	boolean areMiddlePointsClose( Point2D_F64 p0, Point2D_F64 p1, Point2D_F64 p2, Point2D_F64 p3 ) {
		UtilLine2D_F64.convert(p0, p3, line);

		// (computed expected length of a square) * (fractional tolerance)
		double tol1 = p0.distance(p1)*distanceTol;

		// see if inner points are close to the line
		if (Distance2D_F64.distance(line, p1) > tol1)
			return false;

		double tol2 = p2.distance(p3)*distanceTol;

		if (Distance2D_F64.distance(lineB, p2) > tol2)
			return false;

		//------------ Now see if the line defined by one side of a square is close to the closest point on the same
		//             side on the other square
		UtilLine2D_F64.convert(p0, p1, line);
		if (Distance2D_F64.distance(line, p2) > tol2)
			return false;

		UtilLine2D_F64.convert(p3, p2, line);
		if (Distance2D_F64.distance(line, p1) > tol1)
			return false;

		return true;
	}

	/**
	 * Connects the 'candidate' node to node 'n' if they meet several criteria. See code for details.
	 */
	void considerConnect( SquareNode node0, SquareNode node1 ) {

		// Find the side on each line which intersects the line connecting the two centers
		lineA.a = node0.center;
		lineA.b = node1.center;

		int intersection0 = graph.findSideIntersect(node0, lineA, intersection, lineB);
		connectLine.a.setTo(intersection);
		int intersection1 = graph.findSideIntersect(node1, lineA, intersection, lineB);
		connectLine.b.setTo(intersection);

		if (intersection1 < 0 || intersection0 < 0) {
			return;
		}

		double side0 = node0.sideLengths[intersection0];
		double side1 = node1.sideLengths[intersection1];

		// it should intersect about in the middle of the line
		double sideLoc0 = connectLine.a.distance(node0.square.get(intersection0))/side0;
		double sideLoc1 = connectLine.b.distance(node1.square.get(intersection1))/side1;

		if (Math.abs(sideLoc0 - 0.5) > 0.35 || Math.abs(sideLoc1 - 0.5) > 0.35)
			return;

		// seems to be about 1/2 the length typically
//		System.out.println("lineA "+lineA.getLength()+"  connectLine "+connectLine.getLength());

		// see if the spacing makes sense
		double spaceDistance = connectLine.getLength();
//		double distanceApart = spaceDistance*spaceToSquareRatio;

//		if( distanceApart*1.2 < Math.min(side0,side1) )
//			return;
//		if( distanceApart*0.8 > Math.max(side0,side1) )
//			return;

		// see if connecting sides are of similar size
		if (Math.abs(side0 - side1)/Math.max(side0, side1) > 0.25) {
			return;
		}
//
//		// see if the intersection line is about perpendicular to both sides
//		double angle0 = acuteAngle(node0,intersection0,lineA);
//		double angle1 = acuteAngle(node1,intersection1,lineA);
//
//		System.out.printf("  acute %5.2f   %5.2f\n",UtilAngle.degree(angle0),UtilAngle.degree(angle1));

//		double angle = UtilAngle.radian(20);
//		if( Math.abs(angle0-Math.PI/2) > angle || Math.abs(angle1-Math.PI/2) > angle)
//			return;


		// Checks to see if the two sides selected above are closest to being parallel to each other.
		// Perspective distortion will make the lines not parallel, but will still have a smaller
		// acute angle than the adjacent sides
		if (!graph.almostParallel(node0, intersection0, node1, intersection1)) {
			return;
		}

		double ratio = Math.max(node0.smallestSide/node1.largestSide,
				node1.smallestSide/node0.largestSide);

//		System.out.println("ratio "+ratio);
		if (ratio > 1.3)
			return;

		// See if they are crudely the same size
//		double area0 = node0.corners.areaSimple();
//		double area1 = node1.corners.areaSimple();

//		if( Math.min(area0,area1)/Math.max(area0,area1) < 0.25 )
//			return;

		// The following two tests see if the end points which define the two selected sides are close to
		// the line created by the end points which define the opposing side.
		// Another way of saying this, for the "top" corner on the side, is it close to the line defined
		// by the side "top" sides on both squares.
		// just look at the code its easier than understanding that description
//		if( !areMiddlePointsClose(node0.corners.get(add(intersection0, -1)), node0.corners.get(intersection0),
//				node1.corners.get(add(intersection1, 1)), node1.corners.get(add(intersection1, 2)))) {
//			return;
//		}
//
//		if( !areMiddlePointsClose(node0.corners.get(add(intersection0,2)),node0.corners.get(add(intersection0,1)),
//				node1.corners.get(intersection1),node1.corners.get(add(intersection1,-1)))) {
//			return;
//		}
		graph.checkConnect(node0, intersection0, node1, intersection1, spaceDistance);
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy