All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.fiducial.dots.UchiyaMarkerTracker Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

The newest version!
/*
 * Copyright (c) 2022, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.fiducial.dots;

import boofcv.abst.geo.Estimate1ofEpipolar;
import boofcv.abst.geo.RefineEpipolar;
import boofcv.alg.feature.describe.llah.LlahDocument;
import boofcv.alg.feature.describe.llah.LlahOperations;
import boofcv.factory.geo.EpipolarError;
import boofcv.factory.geo.FactoryMultiView;
import boofcv.struct.geo.AssociatedPair;
import boofcv.struct.geo.PointIndex2D_F64;
import georegression.struct.homography.Homography2D_F64;
import georegression.struct.homography.UtilHomography_F64;
import georegression.struct.point.Point2D_F64;
import georegression.transform.homography.HomographyPointOps_F64;
import gnu.trove.map.hash.TIntIntHashMap;
import gnu.trove.map.hash.TIntObjectHashMap;
import lombok.Getter;
import lombok.Setter;
import org.ddogleg.fitting.modelset.ransac.Ransac;
import org.ddogleg.struct.DogArray;
import org.ddogleg.struct.DogArray_I32;
import org.ddogleg.struct.VerbosePrint;
import org.ejml.data.DMatrixRMaj;
import org.jetbrains.annotations.Nullable;

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Set;

/**
 * 

Detector and tracker for Uchiya Markers (a.k.a. Random Dot) see [1].

* *

All known targets are stored in the "global" dictionary. The documentID in global dictionary are persistent. * When documents are tracked between two frames they are assigned a temporary track ID. Tracking works by * taking the most recent observations and computing a new LLAH description from those. This allows the description * to change with a changing perspective.

* * When a document is detected a homography is computed from the canonical coordinates (global or previous track) * to the current image pixels. This homography is then used to recompute the predicted location of all features, * even ones which were not observed. The new track LLAH description is computed from these predicted landmarks. * *

NOTE: See in code comments about attempts to speed up this tracker.

* * @author Peter Abeles * @see boofcv.alg.feature.describe.llah.LlahOperations * *

[1] Uchiyama, Hideaki, and Hideo Saito. "Random dot markers." 2011 IEEE Virtual Reality Conference. IEEE, 2011.

*/ public class UchiyaMarkerTracker implements VerbosePrint { // Optimizing the tracker appears to be more difficult than initially thought. Below are some attempts that failed. // // 1) Combining llahOps and llahTrackingOps together and making detection/tracking into a single step. // The combined detection/tracking step was faster, but track update was slower because it had to undo // the modification to llahOps when removing the old documents. Net result was about the same. // 2) Looking up documents only using the feature hashcode and not the invariants since Uchiya doesn't need // invariants. // This ended up being slower. This could be because a hashmap was built instead of an inexpensive linked list // when going from hash code to features. // 3) Simplifying image processing to use crude dots instead of refined ellipses would speed things up, but the // bottle neck is detection, tracking, and update steps. // // Profiling didn't show any obvious easy to fix inefficient code. // Stores the "global" dictionary of documents @Getter @Setter LlahOperations llahOps; /** Threshold used to filter false positives documents. At least this many landmarks need to be seen. */ @Getter @Setter int minLandmarkDoc = 8; /** Minimum number of hits a dot needs to a landmark to be considered a pair */ @Getter @Setter int minDotHits = 5; /** Sets if tracking is turned on or not */ @Getter @Setter boolean tracking = true; /** Print tracking and debugging messages */ private @Nullable PrintStream verbose = null; // Storage for documents which have been lookd up List foundDocs = new ArrayList<>(); // List of tracks which were visible in the most recent frame @Getter DogArray currentTracks = new DogArray<>(Track::new, Track::reset); // Look up table that goes from global ID to Track TIntObjectHashMap globalId_to_track = new TIntObjectHashMap<>(); // Lookup table from track ID to global ID TIntIntHashMap trackId_to_globalId = new TIntIntHashMap(); // LLAH dictionary for tracks in the previous frame LlahOperations llahTrackingOps; // Internal profiling /** Time to track objects */ @Getter double timeTrack; /** Time to detect objects */ @Getter double timeDetect; /** Time to update track descriptions */ @Getter double timeUpdate; // Estimate the homography with noise Ransac ransac; // Estimate from a batch of observations Estimate1ofEpipolar estimateHomography = FactoryMultiView.homographyTLS(); // Non-linear refinement with mixel errors RefineEpipolar refineHomography = FactoryMultiView.homographyRefine(0.01, 50, EpipolarError.SAMPSON); DMatrixRMaj foundH = new DMatrixRMaj(3, 3); DMatrixRMaj refinedH = new DMatrixRMaj(3, 3); // landmark -> dots DogArray ransacPairs = new DogArray<>(AssociatedPair::new); List inlierPairs = new ArrayList<>(); // for refinement // which dots were given as input to RANSAC DogArray_I32 ransacDotIdx = new DogArray_I32(); /** * Configures the tracker */ public UchiyaMarkerTracker( LlahOperations llahOps, Ransac ransac ) { this.llahOps = llahOps; this.ransac = ransac; llahTrackingOps = new LlahOperations(llahOps.getNumberOfNeighborsN(), llahOps.getSizeOfCombinationM(), llahOps.getHasher()); } /** * Resets the track into its original state */ public void resetTracking() { llahTrackingOps.clearDocuments(); trackId_to_globalId.clear(); globalId_to_track.clear(); ransac.reset(); } /** * Detects and tracks dot patterns. * * @param detectedDots Input image. Not modified. */ public void process( List detectedDots ) { // Reset the tracker currentTracks.reset(); globalId_to_track.clear(); double nano0 = System.nanoTime(); performTracking(detectedDots); double nano1 = System.nanoTime(); performDetection(detectedDots); double nano2 = System.nanoTime(); setTrackDescriptionsAndID(); double nano3 = System.nanoTime(); this.timeTrack = (nano1 - nano0)*1e-6; this.timeDetect = (nano2 - nano1)*1e-6; this.timeUpdate = (nano3 - nano2)*1e-6; } /** * Detects landmarks using their tracking definition. */ void performTracking( List detectedDots ) { // See if any previously tracked markers are visible llahTrackingOps.lookupDocuments(detectedDots, minLandmarkDoc, foundDocs); // save the observations for (int i = 0; i < foundDocs.size(); i++) { LlahOperations.FoundDocument foundTrackDoc = foundDocs.get(i); Track track = currentTracks.grow(); if (fitHomographAndPredict(detectedDots, foundTrackDoc, track)) { // convert from track doc to dictionary doc ID int globalID = trackId_to_globalId.get(foundTrackDoc.document.documentID); track.globalDoc = llahOps.getDocuments().get(globalID); globalId_to_track.put(globalID, track); if (verbose != null) verbose.println(" tracked doc " + globalID); } else { if (verbose != null) verbose.println(" failed to fit homography while tracking"); currentTracks.removeTail(); } } } /** * Detects landmarks using global dictionary. If a document is already being tracked it will be ignored */ void performDetection( List detectedDots ) { // Detect new markers from their definitions llahOps.lookupDocuments(detectedDots, minLandmarkDoc, foundDocs); // save the observations, but ignore previously detected markers for (int i = 0; i < foundDocs.size(); i++) { LlahOperations.FoundDocument foundDoc = foundDocs.get(i); if (globalId_to_track.containsKey(foundDoc.document.documentID)) continue; Track track = currentTracks.grow(); track.globalDoc = foundDoc.document; if (fitHomographAndPredict(detectedDots, foundDoc, track)) { globalId_to_track.put(track.globalDoc.documentID, track); if (verbose != null) verbose.println(" detected doc " + track.globalDoc.documentID); } else { currentTracks.removeTail(); } } } /** * Updates the track descriptions based on the most recent predicted observations */ private void setTrackDescriptionsAndID() { // Compute new definitions for all tracks llahTrackingOps.clearDocuments(); trackId_to_globalId.clear(); globalId_to_track.forEachEntry(( globalID, track ) -> { track.trackDoc = llahTrackingOps.createDocument(track.predicted.toList()); // copy global landmarks into track so that in the next iteration the homography will be correct track.trackDoc.landmarks.reset(); track.trackDoc.landmarks.copyAll(track.globalDoc.landmarks.toList(), ( src, dst ) -> dst.setTo(src)); trackId_to_globalId.put(track.trackDoc.documentID, globalID); return true; }); } /** * Robustly fit a homography to the observations and then use that to predict where all the * corners should have appeared. * * @param doc observed corners on document * @param track (Output) storage for results * @return true is successful */ private boolean fitHomographAndPredict( List detectedDots, LlahOperations.FoundDocument doc, Track track ) { // Fit a homography to points if (!fitHomography(detectedDots, doc)) return false; // Create a list of used landmarks from the inlier set inlierPairs.clear(); int N = ransac.getMatchSet().size(); for (int i = 0; i < N; i++) { int inputIdx = ransac.getInputIndex(i); int dotIdx = ransacDotIdx.get(inputIdx); int landmarkIdx = doc.landmarkToDots.indexOf(dotIdx); track.observed.grow().setTo(detectedDots.get(dotIdx), landmarkIdx); inlierPairs.add(ransacPairs.get(inputIdx)); } // Estimate using all the inliers by minimizing algebraic errors estimateHomography.process(inlierPairs, foundH); // Non-linear refinement of reprojection error refineHomography.fitModel(inlierPairs, foundH, refinedH); // Use the homography to estimate where the landmarks would have appeared UtilHomography_F64.convert(refinedH, track.doc_to_imagePixel); track.predicted.resize(doc.document.landmarks.size); // Predict where all the observations shuld be based on the homography for (int landmarkIdx = 0; landmarkIdx < doc.document.landmarks.size; landmarkIdx++) { Point2D_F64 predictedPixel = track.predicted.get(landmarkIdx); HomographyPointOps_F64.transform(track.doc_to_imagePixel, doc.document.landmarks.get(landmarkIdx), predictedPixel); } return true; } /** * Fits a homography from document coordinates to observed image pixels * * @param dots Dots seen in the image * @param observed The matched document * @return true if successful */ boolean fitHomography( List dots, LlahOperations.FoundDocument observed ) { // create the ransac pairs ransacPairs.reset(); ransacDotIdx.reset(); for (int landmarkIdx = 0; landmarkIdx < observed.document.landmarks.size; landmarkIdx++) { final Point2D_F64 landmark = observed.document.landmarks.get(landmarkIdx); int dotIdx = observed.landmarkToDots.get(landmarkIdx); if (dotIdx < 0) continue; ransacDotIdx.add(dotIdx); ransacPairs.grow().setTo(landmark, dots.get(dotIdx)); } if (ransacPairs.size < ransac.getMinimumSize()) return false; // Ransac needs to find an inlier set and the inlier set needs to be of sufficient size if (ransac.process(ransacPairs.toList())) { return ransac.getMatchSet().size() >= minLandmarkDoc; } return false; } @Override public void setVerbose( @Nullable PrintStream out, @Nullable Set configuration ) { this.verbose = out; } /** * Contains information on a marker that's being tracked */ @SuppressWarnings("NullAway.Init") public static class Track { /** Reference to Tracking document */ public LlahDocument trackDoc; /** Reference to the global document */ public LlahDocument globalDoc; /** Found homography from landmark to image pixels */ public final Homography2D_F64 doc_to_imagePixel = new Homography2D_F64(); /** Pixel location of each landmark predicted using the homography */ public final DogArray predicted = new DogArray<>(Point2D_F64::new); /** Observed pixels with landmarks indexes */ public final DogArray observed = new DogArray<>(PointIndex2D_F64::new); /** Resets to initial state */ @SuppressWarnings("NullAway") public void reset() { trackDoc = null; globalDoc = null; predicted.reset(); observed.reset(); doc_to_imagePixel.reset(); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy