All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.fiducial.qrcode.GaliosFieldTableOps Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

The newest version!
/*
 * Copyright (c) 2022, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.fiducial.qrcode;

/**
 * Precomputed look up table for performing operations on GF polynomials of the specified degree.
 *
 * 

Code and code comments based on the tutorial at [1].

* *

[1] Reed-Solomon Codes for Coders * Viewed on September 28, 2017

* * @author Peter Abeles */ public class GaliosFieldTableOps { protected int max_value; // maximum possible protected int num_values; // number of values in the field protected int numBits; protected int primitive; protected int[] exp; protected int[] log; /** * Specifies the GF polynomial * * @param numBits Number of bits needed to describe the polynomial. GF(2**8) = 8 bits * @param primitive The primitive polynomial */ public GaliosFieldTableOps( int numBits, int primitive ) { if (numBits < 1 || numBits > 16) throw new IllegalArgumentException("Degree must be more than 1 and less than or equal to 16"); this.numBits = numBits; this.primitive = primitive; max_value = 0; for (int i = 0; i < numBits; i++) { max_value |= 1 << i; } num_values = max_value + 1; log = new int[num_values]; exp = new int[num_values*2]; // make it twice as long to avoid a modulus operation // exhaustively compute all values int x = 1; for (int i = 0; i < max_value; i++) { exp[i] = x; log[x] = i; x = GaliosFieldOps.multiply(x, 2, primitive, num_values); } for (int i = 0; i < num_values; i++) { exp[i + max_value] = exp[i]; } } /** * Computes the following (x*y) mod primitive. This is done by */ public int multiply( int x, int y ) { if (x == 0 || y == 0) return 0; return exp[log[x] + log[y]]; } /** * Computes the following the value of output such that:
*

divide(multiply(x,y),y)==x for any x and any nonzero y.

*/ public int divide( int x, int y ) { if (y == 0) throw new ArithmeticException("Divide by zero"); if (x == 0) return 0; return exp[log[x] + max_value - log[y]]; } /** * Computes the following x**power mod primitive */ public int power( int x, int power ) { return exp[(log[x]*power)%max_value]; } public int power_n( int x, int power ) { int a = (log[x]*power)%max_value; if (a < 0) a = max_value*2 + a; return exp[a]; } /** * Computes the following 2**(max-x) mod primitive */ public int inverse( int x ) { return exp[max_value - log[x]]; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy