All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.fiducial.qrcode.GaliosFieldTableOps_U16 Maven / Gradle / Ivy

/*
 * Copyright (c) 2022, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.fiducial.qrcode;

import org.ddogleg.struct.DogArray_I16;

/**
 * Precomputed look up table for performing operations on GF polynomials of the specified degree.
 *
 * 

Code and code comments based on the tutorial at [1].

* *

[1] Reed-Solomon Codes for Coders * Viewed on September 28, 2017

* * @author Peter Abeles */ public class GaliosFieldTableOps_U16 extends GaliosFieldTableOps { /** * Specifies the GF polynomial * * @param numBits Number of bits needed to describe the polynomial. GF(2**8) = 8 bits * @param primitive The primitive polynomial */ public GaliosFieldTableOps_U16( int numBits, int primitive ) { super(numBits, primitive); } /** * Scales the polynomial. * *

Coefficients for largest powers are first, e.g. 2*x**3 + 8*x**2+1 = [2,8,0,1]

* * @param input Input polynomial. * @param scale scale * @param output Output polynomial. */ public void polyScale( DogArray_I16 input, int scale, DogArray_I16 output ) { output.resize(input.size); for (int i = 0; i < input.size; i++) { output.data[i] = (short)multiply(input.data[i] & 0xFFFF, scale); } } /** * Adds two polynomials together. output = polyA + polyB * *

Coefficients for largest powers are first, e.g. 2*x**3 + 8*x**2+1 = [2,8,0,1]

* * @param polyA (Input) First polynomial * @param polyB (Input) Second polynomial * @param output (Output) Results of addition */ public void polyAdd( DogArray_I16 polyA, DogArray_I16 polyB, DogArray_I16 output ) { output.resize(Math.max(polyA.size, polyB.size)); // compute offset that would align the smaller polynomial with the larger polynomial int offsetA = Math.max(0, polyB.size - polyA.size); int offsetB = Math.max(0, polyA.size - polyB.size); int N = output.size; for (int i = 0; i < offsetB; i++) { output.data[i] = polyA.data[i]; } for (int i = 0; i < offsetA; i++) { output.data[i] = polyB.data[i]; } for (int i = Math.max(offsetA, offsetB); i < N; i++) { output.data[i] = (short)((polyA.data[i - offsetA] & 0xFFFF) ^ (polyB.data[i - offsetB] & 0xFFFF)); } } /** * Adds two polynomials together. * *

Coefficients for smallest powers are first, e.g. 2*x**3 + 8*x**2+1 = [1,0,2,8]

* * @param polyA (Input) First polynomial * @param polyB (Input) Second polynomial * @param output (Output) Results of addition */ public void polyAdd_S( DogArray_I16 polyA, DogArray_I16 polyB, DogArray_I16 output ) { output.resize(Math.max(polyA.size, polyB.size)); int M = Math.min(polyA.size, polyB.size); for (int i = M; i < polyA.size; i++) { output.data[i] = polyA.data[i]; } for (int i = M; i < polyB.size; i++) { output.data[i] = polyB.data[i]; } for (int i = 0; i < M; i++) { output.data[i] = (short)((polyA.data[i] & 0xFFFF) ^ (polyB.data[i] & 0xFFFF)); } } /** * Adds two polynomials together while scaling the second. * *

Coefficients for largest powers are first, e.g. 2*x**3 + 8*x**2+1 = [2,8,0,1]

* * @param polyA (Input) First polynomial * @param polyB (Input) Second polynomial * @param scaleB (Input) Scale factor applied to polyB * @param output (Output) Results of addition */ public void polyAddScaleB( DogArray_I16 polyA, DogArray_I16 polyB, int scaleB, DogArray_I16 output ) { output.resize(Math.max(polyA.size, polyB.size)); // compute offset that would align the smaller polynomial with the larger polynomial int offsetA = Math.max(0, polyB.size - polyA.size); int offsetB = Math.max(0, polyA.size - polyB.size); int N = output.size; for (int i = 0; i < offsetB; i++) { output.data[i] = polyA.data[i]; } for (int i = 0; i < offsetA; i++) { output.data[i] = (short)multiply(polyB.data[i] & 0xFFFF, scaleB); } for (int i = Math.max(offsetA, offsetB); i < N; i++) { output.data[i] = (short)((polyA.data[i - offsetA] & 0xFFFF) ^ multiply(polyB.data[i - offsetB] & 0xFFFF, scaleB)); } } /** *

Coefficients for largest powers are first, e.g. 2*x**3 + 8*x**2+1 = [2,8,0,1]

*/ public void polyMult( DogArray_I16 polyA, DogArray_I16 polyB, DogArray_I16 output ) { // Lots of room for efficiency improvements in this function output.resize(polyA.size + polyB.size - 1); output.zero(); for (int j = 0; j < polyB.size; j++) { int vb = polyB.data[j] & 0xFFFF; for (int i = 0; i < polyA.size; i++) { int va = polyA.data[i] & 0xFFFF; output.data[i + j] ^= (short)multiply(va, vb); } } } public void polyMult_flipA( DogArray_I16 polyA, DogArray_I16 polyB, DogArray_I16 output ) { // Lots of room for efficiency improvements in this function output.resize(polyA.size + polyB.size - 1); output.zero(); for (int j = 0; j < polyB.size; j++) { int vb = polyB.data[j] & 0xFFFF; for (int i = 0; i < polyA.size; i++) { int va = polyA.data[polyA.size - i - 1] & 0xFFFF; output.data[i + j] ^= (short)multiply(va, vb); } } } /** * Identical to {@link #polyMult(DogArray_I16, DogArray_I16, DogArray_I16)} * *

Coefficients for smallest powers are first, e.g. 2*x**3 + 8*x**2+1 = [1,0,2,8]

*/ public void polyMult_S( DogArray_I16 polyA, DogArray_I16 polyB, DogArray_I16 output ) { // Lots of room for efficiency improvements in this function output.resize(polyA.size + polyB.size - 1); output.zero(); for (int j = polyB.size - 1; j >= 0; j--) { int vb = polyB.data[j] & 0xFFFF; for (int i = polyA.size - 1; i >= 0; i--) { int va = polyA.data[i] & 0xFFFF; output.data[i + j] ^= (short)multiply(va, vb); } } } /** * Evaluate the polynomial using Horner's method. Avoids explicit calculating the powers of x. * *

01x**4 + 0fx**3 + 36x**2 + 78x + 40 = (((01 x + 0f) x + 36) x + 78) x + 40

* * *

Coefficients for largest powers are first, e.g. 2*x**3 + 8*x**2+1 = [2,8,0,1]

* * @param input Polynomial being evaluated * @param x Value of x * @return Output of function */ public int polyEval( DogArray_I16 input, int x ) { int y = input.data[0] & 0xFFFF; for (int i = 1; i < input.size; i++) { y = multiply(y, x) ^ (input.data[i] & 0xFFFF); } return y; } /** * Evaluate the polynomial using Horner's method. Avoids explicit calculating the powers of x. * *

01x**4 + 0fx**3 + 36x**2 + 78x + 40 = (((01 x + 0f) x + 36) x + 78) x + 40

* * *

Coefficients for smallest powers are first, e.g. 2*x**3 + 8*x**2+1 = [1,0,2,8]

* * @param input Polynomial being evaluated * @param x Value of x * @return Output of function */ public int polyEval_S( DogArray_I16 input, int x ) { int y = input.data[input.size - 1] & 0xFFFF; for (int i = input.size - 2; i >= 0; i--) { y = multiply(y, x) ^ (input.data[i] & 0xFFFF); } return y; } /** * Continue evaluating a polynomial which has been broken up into multiple arrays. * * @param previousOutput Output from the evaluation of the prior part of the polynomial * @param part Additional segment of the polynomial * @param x Point it's being evaluated at * @return results */ public int polyEvalContinue( int previousOutput, DogArray_I16 part, int x ) { int y = previousOutput; for (int i = 0; i < part.size; i++) { y = multiply(y, x) ^ (part.data[i] & 0xFFFF); } return y; } /** * Performs polynomial division using a synthetic division algorithm. * *

Coefficients for largest powers are first, e.g. 2*x**3 + 8*x**2+1 = [2,8,0,1]

* * @param dividend (Input) Polynomial dividend * @param divisor (Input) Polynomial divisor * @param quotient (Output) Division's quotient * @param remainder (Output) Divisions's remainder */ public void polyDivide( DogArray_I16 dividend, DogArray_I16 divisor, DogArray_I16 quotient, DogArray_I16 remainder ) { // handle special case if (divisor.size > dividend.size) { remainder.setTo(dividend); quotient.resize(0); return; } else { remainder.resize(divisor.size - 1); quotient.setTo(dividend); } int normalizer = divisor.data[0] & 0xFFFF; int N = dividend.size - divisor.size + 1; for (int i = 0; i < N; i++) { quotient.data[i] = (short)divide(quotient.data[i] & 0xFFFF, normalizer); int coef = quotient.data[i] & 0xFFFF; if (coef != 0) { // division by zero is undefined. for (int j = 1; j < divisor.size; j++) { // skip the first coeffient in synthetic division int div_j = divisor.data[j] & 0xFFFF; if (div_j != 0) {// log(0) is undefined. quotient.data[i + j] ^= (short)multiply(div_j, coef); } } } } // quotient currently contains the quotient and remainder. Copy remainder into it's own polynomial System.arraycopy(quotient.data, quotient.size - remainder.size, remainder.data, 0, remainder.size); quotient.size -= remainder.size; } /** * Performs polynomial division using a synthetic division algorithm. * *

Coefficients for smallest powers are first, e.g. 2*x**3 + 8*x**2+1 = [1,0,2,8]

* * @param dividend (Input) Polynomial dividend * @param divisor (Input) Polynomial divisor * @param quotient (Output) Division's quotient * @param remainder (Output) Divisions's remainder */ public void polyDivide_S( DogArray_I16 dividend, DogArray_I16 divisor, DogArray_I16 quotient, DogArray_I16 remainder ) { // handle special case if (divisor.size > dividend.size) { remainder.setTo(dividend); quotient.resize(0); return; } else { quotient.resize(dividend.size - divisor.size + 1); remainder.setTo(dividend); } int normalizer = divisor.data[divisor.size - 1] & 0xFFFF; int N = dividend.size - divisor.size + 1; for (int i = 0; i < N; i++) { int q_i = remainder.size - i - 1; remainder.data[q_i] = (short)divide(remainder.data[q_i] & 0xFFFF, normalizer); int coef = remainder.data[q_i] & 0xFFFF; if (coef != 0) { // division by zero is undefined. for (int j = 1; j < divisor.size; j++) { // skip the first coeffient in synthetic division int d_j = divisor.size - j - 1; int div_j = divisor.data[d_j] & 0xFFFF; if (div_j != 0) {// log(0) is undefined. remainder.data[remainder.size - i - j - 1] ^= (short)multiply(div_j, coef); } } } } // quotient currently contains the quotient and remainder. Copy remainder into it's own polynomial remainder.size -= quotient.size; System.arraycopy(remainder.data, remainder.size, quotient.data, 0, quotient.size); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy