boofcv.alg.fiducial.square.DetectFiducialSquareImage Maven / Gradle / Ivy
/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.fiducial.square;
import boofcv.abst.distort.FDistort;
import boofcv.abst.filter.binary.InputToBinary;
import boofcv.alg.descriptor.DescriptorDistance;
import boofcv.alg.filter.binary.GThresholdImageOps;
import boofcv.alg.filter.misc.AverageDownSampleOps;
import boofcv.alg.misc.ImageMiscOps;
import boofcv.alg.misc.ImageStatistics;
import boofcv.alg.misc.PixelMath;
import boofcv.alg.shapes.polygon.DetectPolygonBinaryGrayRefine;
import boofcv.core.image.ConvertImage;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayU8;
import boofcv.struct.image.ImageGray;
import java.util.ArrayList;
import java.util.List;
/**
*
* Fiducial which uses images to describe arbitrary binary patterns. When useing this fiducial it's up to the user to
* select good images which will provide unique orientation and are easily distinguished against other patterns and
* noise insensitive.
*
*
*
*
*
* The above image visually shows the fiducials internal coordinate system. The center of the fiducial is the origin
* of the coordinate system, e.g. all sides are width/2 distance away from the origin. +x is to the right, +y is up
* , and +z out of the paper towards the viewer.
*
*
* A good pattern will have thick lines or thick shapes. When detecting the image it's not uncommon for the distortion
* removal to be off by one or two pixels. So think lines are be completely out of synch. The image should also
* be chosen so that there is to rotational ambiguity. A perfect circle in the center is an example of a bad fiducial
* in which orientation can't be uniquely determined.
*
* @author Peter Abeles
*/
public class DetectFiducialSquareImage>
extends BaseDetectFiducialSquare {
// Width of black border (units = pixels)
private final static int w=16;
private final static int squareLength=w*4; // this must be a multiple of 16
// length of description in 16bit units
private final static int DESC_LENGTH = squareLength*squareLength/16;
// converts the input image into a binary one
private GrayU8 binary = new GrayU8(squareLength,squareLength);
// list of all known targets
private List targets = new ArrayList<>();
// description of the current target candidate
private short squareDef[] = new short[DESC_LENGTH];
// storage for no border sub-image
private GrayF32 grayNoBorder = new GrayF32();
// if the hamming score is better than this it is considered to be a good match
private int hammingThreshold;
/**
* Configures the fiducial detector
*
* @param matchThreshold Considered a match if the hamming distance is less than this fraction of the maximum
*/
public DetectFiducialSquareImage(InputToBinary inputToBinary,
DetectPolygonBinaryGrayRefine quadDetector,
double borderWidthFraction ,
double minimumBlackBorderFraction ,
double matchThreshold, Class inputType) {
super(inputToBinary,quadDetector, false, borderWidthFraction, minimumBlackBorderFraction, (int)Math.round(squareLength/(1-2.0*borderWidthFraction)), inputType
);
hammingThreshold = (int)(squareLength*squareLength*matchThreshold);
//noinspection ConstantConditions
if( squareLength%16 != 0 )
throw new RuntimeException("Square Length must be a multiple of 16");
}
/**
* Adds a new image to the detector. Image must be gray-scale and is converted into
* a binary image using the specified threshold. All input images are rescaled to be
* square and of the appropriate size. Thus the original shape of the image doesn't
* matter. Square shapes are highly recommended since that's what the target looks like.
*
* @param inputBinary Binary input image pattern. 0 = black, 1 = white.
* @param lengthSide How long one of the sides of the target is in world units.
* @return The ID of the provided image
*/
public int addPattern(GrayU8 inputBinary, double lengthSide) {
if( inputBinary == null ) {
throw new IllegalArgumentException("Input image is null.");
} else if( lengthSide <= 0 ) {
throw new IllegalArgumentException("Parameter lengthSide must be more than zero");
} else if(ImageStatistics.max(inputBinary) > 1 )
throw new IllegalArgumentException("A binary image is composed on 0 and 1 pixels. This isn't binary!");
// see if it needs to be resized
if ( inputBinary.width != squareLength || inputBinary.height != squareLength ) {
// need to create a new image and rescale it to better handle the resizing
GrayF32 inputGray = new GrayF32(inputBinary.width,inputBinary.height);
ConvertImage.convert(inputBinary,inputGray);
PixelMath.multiply(inputGray,255,inputGray);
GrayF32 scaled = new GrayF32(squareLength,squareLength);
// See if it can use the better algorithm for scaling down the image
if( inputBinary.width > squareLength && inputBinary.height > squareLength ) {
AverageDownSampleOps.down(inputGray,scaled);
} else {
new FDistort(inputGray,scaled).scaleExt().apply();
}
GThresholdImageOps.threshold(scaled,binary,255/2.0,false);
} else {
binary.setTo(inputBinary);
}
// describe it in 4 different orientations
FiducialDef def = new FiducialDef();
def.lengthSide = lengthSide;
// CCW rotation so that the index refers to how many CW rotation it takes to put it into the nominal pose
binaryToDef(binary, def.desc[0]);
ImageMiscOps.rotateCCW(binary);
binaryToDef(binary, def.desc[1]);
ImageMiscOps.rotateCCW(binary);
binaryToDef(binary, def.desc[2]);
ImageMiscOps.rotateCCW(binary);
binaryToDef(binary, def.desc[3]);
int index = targets.size();
targets.add( def );
return index;
}
/**
* Converts a binary image into the compressed bit format
*/
protected static void binaryToDef(GrayU8 binary , short[] desc ) {
for (int i = 0; i < binary.data.length; i+=16) {
int value = 0;
for (int j = 0; j < 16; j++) {
value |= binary.data[i+j] << j;
}
desc[i/16] = (short)value;
}
}
@Override
protected boolean processSquare(GrayF32 gray, Result result, double edgeInside, double edgeOutside) {
int off = (gray.width-binary.width)/2;
gray.subimage(off,off,off+binary.width,off+binary.width,grayNoBorder);
// grayNoBorder.printInt();
// compute a global threshold from the difference between the outside and inside perimeter pixel values
float threshold = (float)((edgeInside+edgeOutside)/2.0);
GThresholdImageOps.threshold(grayNoBorder,binary,threshold,false);
// binary.printBinary();
binaryToDef(binary, squareDef);
boolean matched = false;
int bestScore = hammingThreshold+1;
for (int i = 0; i < targets.size(); i++) {
FiducialDef def = targets.get(i);
for (int j = 0; j < 4; j++) {
int score = hamming(def.desc[j], squareDef);
if( score < bestScore ) {
bestScore = score;
result.rotation = j;
result.which = i;
result.lengthSide = def.lengthSide;
matched = true;
}
}
}
return matched;
}
/**
* Computes the hamming score between two descriptions. Larger the number better the fit
*/
protected int hamming(short[] a, short[] b) {
int distance = 0;
for (int i = 0; i < a.length; i++) {
distance += DescriptorDistance.hamming((a[i]&0xFFFF) ^ (b[i]&0xFFFF));
}
return distance;
}
public List getTargets() {
return targets;
}
/**
* description of an image in 4 different orientations
*/
public static class FiducialDef
{
public short[][] desc = new short[4][DESC_LENGTH];
public double lengthSide;
}
}