All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.fiducial.square.QuadPoseEstimator Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

The newest version!
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.fiducial.square;

import boofcv.abst.geo.Estimate1ofPnP;
import boofcv.abst.geo.EstimateNofPnP;
import boofcv.abst.geo.RefinePnP;
import boofcv.alg.distort.LensDistortionNarrowFOV;
import boofcv.factory.geo.EnumPNP;
import boofcv.factory.geo.FactoryMultiView;
import boofcv.struct.distort.Point2Transform2_F64;
import boofcv.struct.geo.Point2D3D;
import georegression.geometry.GeometryMath_F64;
import georegression.geometry.UtilPolygons2D_F64;
import georegression.struct.line.LineParametric3D_F64;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import georegression.struct.se.Se3_F64;
import georegression.struct.shapes.Quadrilateral_F64;
import georegression.transform.se.SePointOps_F64;
import org.ddogleg.struct.DogArray;

import java.util.ArrayList;
import java.util.List;

/**
 * Estimates the pose using P3P and iterative refinement from 4 points on a plane with known locations. While
 * this seems like it would be a trivial problem it actually takes several techniques to ensure accurate results.
 * At a high level it uses P3P to provide an estimate. If the error is large it then uses EPNP. Which ever
 * is better it then refines. If the target is small and directly facing the camera it will enlarge the target
 * to estimate it's orientation. Otherwise it will over fit location since it takes a large change in orientation
 * to influence the result.
 *
 * @author Peter Abeles
 */
@SuppressWarnings({"NullAway.Init"})
public class QuadPoseEstimator {

	// if the target is less than or equals to this number of pixels along a side then it is considered small
	// and a special case will be handled.
	// I think this threshold should be valid across different resolution images. Corner accuracy should be
	// less than a pixel and it becomes unstable because changes in hangle result in an error of less than a pixel
	// when the target is small
	public static final double SMALL_PIXELS = 60.0;

	// the adjusted solution is accepted if it doesn't increase the pixel reprojection error more than this amount
	public static final double FUDGE_FACTOR = 0.5;

	// provides set of hypotheses from 3 points
	private final EstimateNofPnP p3p;
	// iterative refinement
	private final RefinePnP refine;

	private final Estimate1ofPnP epnp = FactoryMultiView.pnp_1(EnumPNP.EPNP, 50, 0);

	// transforms from distorted pixel observation normalized image coordinates
	protected Point2Transform2_F64 pixelToNorm;
	protected Point2Transform2_F64 normToPixel;

	// storage for inputs to estimation algorithms
	// observations in normalized image coordinates
	protected List points = new ArrayList<>();

	// observation in undistorted pixels
	protected List listObs = new ArrayList<>();

	private final List inputP3P = new ArrayList<>();
	private final DogArray solutions = new DogArray(Se3_F64::new);
	private final Se3_F64 outputFiducialToCamera = new Se3_F64();
	private final Se3_F64 foundEPNP = new Se3_F64();

	// error for outputFiducialToCamera
	private double outputError;

	private final Point3D_F64 cameraP3 = new Point3D_F64();
	private final Point2D_F64 predicted = new Point2D_F64();

	// storage for when it searches for the best solution
	protected double bestError;
	protected Se3_F64 bestPose = new Se3_F64();

	// predeclared internal work space. Minimizing new memory
	Quadrilateral_F64 pixelCorners = new Quadrilateral_F64();
	Quadrilateral_F64 normCorners = new Quadrilateral_F64();

	Point2D_F64 center = new Point2D_F64();

	// used to store the ray pointing from the camera to the marker in marker reference frame
	LineParametric3D_F64 ray = new LineParametric3D_F64();

	/**
	 * Constructor which picks reasonable and generally good algorithms for pose estimation.
	 *
	 * @param refineTol Convergence tolerance. Try 1e-8
	 * @param refineIterations Number of refinement iterations. Try 200
	 */
	public QuadPoseEstimator( double refineTol, int refineIterations ) {
		this(FactoryMultiView.pnp_N(EnumPNP.P3P_GRUNERT, -1),
				FactoryMultiView.pnpRefine(refineTol, refineIterations));
	}

	/**
	 * Constructor in which internal estimation algorithms are provided
	 */
	public QuadPoseEstimator( EstimateNofPnP p3p, RefinePnP refine ) {
		this.p3p = p3p;
		this.refine = refine;

		for (int i = 0; i < 4; i++) {
			points.add(new Point2D3D());
		}
	}

	/**
	 * Specifies the intrinsic parameters.
	 *
	 * @param distortion Intrinsic camera parameters
	 */
	public void setLensDistoriton( LensDistortionNarrowFOV distortion ) {
		pixelToNorm = distortion.undistort_F64(true, false);
		normToPixel = distortion.distort_F64(false, true);
	}

	/**
	 * Specify the location of points on the 2D fiducial. These should be in "world coordinates"
	 */
	public void setFiducial( double x0, double y0, double x1, double y1,
							 double x2, double y2, double x3, double y3 ) {
		points.get(0).location.setTo(x0, y0, 0);
		points.get(1).location.setTo(x1, y1, 0);
		points.get(2).location.setTo(x2, y2, 0);
		points.get(3).location.setTo(x3, y3, 0);
	}

	/**
	 * Given the found solution, compute the the observed pixel would appear on the marker's surface.
	 * pixel -> normalized pixel -> rotated -> projected on to plane
	 *
	 * @param pixelX (Input) pixel coordinate
	 * @param pixelY (Input) pixel coordinate
	 * @param marker (Output) location on the marker
	 */
	public void pixelToMarker( double pixelX, double pixelY, Point2D_F64 marker ) {

		// find pointing vector in camera reference frame
		pixelToNorm.compute(pixelX, pixelY, marker);
		cameraP3.setTo(marker.x, marker.y, 1);

		// rotate into marker reference frame
		GeometryMath_F64.multTran(outputFiducialToCamera.R, cameraP3, ray.slope);
		GeometryMath_F64.multTran(outputFiducialToCamera.R, outputFiducialToCamera.T, ray.p);
		ray.p.scale(-1);

		double t = -ray.p.z/ray.slope.z;

		marker.x = ray.p.x + ray.slope.x*t;
		marker.y = ray.p.y + ray.slope.y*t;
	}

	/**
	 * 

Estimate the 3D pose of the camera from the observed location of the fiducial.

* * MUST call {@link #setFiducial} and {@link #setLensDistoriton} before calling this function. * * @param corners Observed corners of the fiducial. * @param unitsPixels If true the specified corners are in original image pixels or false for normalized image coordinates * @return true if successful or false if not */ public boolean process( Quadrilateral_F64 corners, boolean unitsPixels ) { if (unitsPixels) { pixelCorners.setTo(corners); pixelToNorm.compute(corners.a.x, corners.a.y, normCorners.a); pixelToNorm.compute(corners.b.x, corners.b.y, normCorners.b); pixelToNorm.compute(corners.c.x, corners.c.y, normCorners.c); pixelToNorm.compute(corners.d.x, corners.d.y, normCorners.d); } else { normCorners.setTo(corners); normToPixel.compute(corners.a.x, corners.a.y, pixelCorners.a); normToPixel.compute(corners.b.x, corners.b.y, pixelCorners.b); normToPixel.compute(corners.c.x, corners.c.y, pixelCorners.c); normToPixel.compute(corners.d.x, corners.d.y, pixelCorners.d); } if (estimate(pixelCorners, normCorners, outputFiducialToCamera)) { outputError = computeErrors(outputFiducialToCamera); return true; } else { return false; } } /** * Given the observed corners of the quad in the image in pixels estimate and store the results * of its pose */ protected boolean estimate( Quadrilateral_F64 cornersPixels, Quadrilateral_F64 cornersNorm, Se3_F64 foundFiducialToCamera ) { // put it into a list to simplify algorithms listObs.clear(); listObs.add(cornersPixels.a); listObs.add(cornersPixels.b); listObs.add(cornersPixels.c); listObs.add(cornersPixels.d); // convert observations into normalized image coordinates which P3P requires points.get(0).observation.setTo(cornersNorm.a); points.get(1).observation.setTo(cornersNorm.b); points.get(2).observation.setTo(cornersNorm.c); points.get(3).observation.setTo(cornersNorm.d); // estimate pose using all permutations bestError = Double.MAX_VALUE; estimateP3P(0); estimateP3P(1); estimateP3P(2); estimateP3P(3); if (bestError == Double.MAX_VALUE) return false; // refine the best estimate inputP3P.clear(); for (int i = 0; i < 4; i++) { inputP3P.add(points.get(i)); } // got poor or horrible solution the first way, let's try it with EPNP // and see if it does better if (bestError > 2) { if (epnp.process(inputP3P, foundEPNP)) { if (foundEPNP.T.z > 0) { double error = computeErrors(foundEPNP); // System.out.println(" error EPNP = "+error); if (error < bestError) { bestPose.setTo(foundEPNP); } } } } if (!refine.fitModel(inputP3P, bestPose, foundFiducialToCamera)) { // us the previous estimate instead foundFiducialToCamera.setTo(bestPose); return true; } return true; } /** * Estimates the pose using P3P from 3 out of 4 points. Then use all 4 to pick the best solution * * @param excluded which corner to exclude and use to check the answers from the others */ protected void estimateP3P( int excluded ) { // the point used to check the solutions is the last one inputP3P.clear(); for (int i = 0; i < 4; i++) { if (i != excluded) { inputP3P.add(points.get(i)); } } // initial estimate for the pose solutions.reset(); if (!p3p.process(inputP3P, solutions)) { // System.err.println("PIP Failed!?! That's weird"); return; } for (int i = 0; i < solutions.size; i++) { double error = computeErrors(solutions.get(i)); // see if it's better and it should save the results if (error < bestError) { bestError = error; bestPose.setTo(solutions.get(i)); } } } /** * Enlarges the quadrilateral to make it more sensitive to changes in orientation */ protected void enlarge( Quadrilateral_F64 corners, double scale ) { UtilPolygons2D_F64.center(corners, center); extend(center, corners.a, scale); extend(center, corners.b, scale); extend(center, corners.c, scale); extend(center, corners.d, scale); } protected void extend( Point2D_F64 pivot, Point2D_F64 corner, double scale ) { corner.x = pivot.x + (corner.x - pivot.x)*scale; corner.y = pivot.y + (corner.y - pivot.y)*scale; } /** * Compute the sum of reprojection errors for all four points * * @param fiducialToCamera Transform being evaluated * @return sum of Euclidean-squared errors */ protected double computeErrors( Se3_F64 fiducialToCamera ) { if (fiducialToCamera.T.z < 0) { // the low level algorithm should already filter this code, but just incase return Double.MAX_VALUE; } double maxError = 0; for (int i = 0; i < 4; i++) { maxError = Math.max(maxError, computePixelError(fiducialToCamera, points.get(i).location, listObs.get(i))); } return maxError; } private double computePixelError( Se3_F64 fiducialToCamera, Point3D_F64 X, Point2D_F64 pixel ) { SePointOps_F64.transform(fiducialToCamera, X, cameraP3); normToPixel.compute(cameraP3.x/cameraP3.z, cameraP3.y/cameraP3.z, predicted); return predicted.distance(pixel); } public Se3_F64 getWorldToCamera() { return outputFiducialToCamera; } /** * Reprojection error of fiducial */ public double getError() { return outputError; } public List createCopyPoints2D3D() { List out = new ArrayList<>(); for (int i = 0; i < 4; i++) { out.add(points.get(i).copy()); } return out; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy