boofcv.alg.tracker.meanshift.LikelihoodHistCoupled_SB_U8 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-recognition Show documentation
Show all versions of boofcv-recognition Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
The newest version!
/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.tracker.meanshift;
import boofcv.struct.image.GrayU8;
import georegression.struct.shapes.RectangleLength2D_I32;
/**
*
* Creates a histogram in a gray scale image which is then used to compute the likelihood of a color being a
* member of the original distribution based on its frequency.
*
*
*
* Design Note:
* The reason operations in {@link boofcv.alg.feature.color.GHistogramFeatureOps} is not used internally is because
* those are for histograms stored in double arrays, while this has to use floats/
*
*
* @author Peter Abeles
*/
@SuppressWarnings({"NullAway.Init"})
public class LikelihoodHistCoupled_SB_U8 implements PixelLikelihood {
GrayU8 image;
// maximum value a pixel can have.
int maxPixelValue;
// Number of bins for each channel in the histogram
int numBins;
float[] hist = new float[0];
public LikelihoodHistCoupled_SB_U8( int maxPixelValue, int numBins ) {
this.maxPixelValue = maxPixelValue + 1;
this.numBins = numBins;
}
@Override
public void setImage( GrayU8 image ) {
this.image = image;
if (hist.length != numBins) {
hist = new float[numBins];
}
}
@Override
public boolean isInBounds( int x, int y ) {
return image.isInBounds(x, y);
}
@Override
public void createModel( RectangleLength2D_I32 target ) {
for (int y = 0; y < target.height; y++) {
int index = image.startIndex + (y + target.y0)*image.stride + target.x0;
for (int x = 0; x < target.width; x++, index++) {
int value = image.data[index] & 0xFF;
int bin = numBins*value/maxPixelValue;
hist[bin]++;
}
}
float total = target.width*target.height;
for (int i = 0; i < hist.length; i++) {
hist[i] /= total;
}
}
@Override
public float compute( int x, int y ) {
int index = image.startIndex + y*image.stride + x;
int value = image.data[index] & 0xFF;
int bin = numBins*value/maxPixelValue;
return hist[bin];
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy