All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.tracker.tld.TldTracker Maven / Gradle / Ivy

/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.tracker.tld;

import boofcv.abst.filter.derivative.ImageGradient;
import boofcv.alg.interpolate.InterpolatePixelS;
import boofcv.alg.tracker.klt.PyramidKltTracker;
import boofcv.factory.tracker.FactoryTrackerAlg;
import boofcv.factory.transform.pyramid.FactoryPyramid;
import boofcv.struct.ImageRectangle;
import boofcv.struct.image.ImageGray;
import boofcv.struct.pyramid.ConfigDiscreteLevels;
import boofcv.struct.pyramid.PyramidDiscrete;
import georegression.struct.shapes.Rectangle2D_F64;
import org.ddogleg.struct.DogArray;
import org.jetbrains.annotations.Nullable;

import java.util.Objects;
import java.util.Random;

/**
 * 

* Main class for Tracking-Learning-Detection (TLD) [1] (a.k.a Predator) object tracker for video sequences. * TLD tracks an object which is specified by a user using a rectangle. The description of the object is * dynamically updated using P and N constraints. *

* *

* To start tracking {@link #initialize(ImageGray, int, int, int, int)} must first be called * to specify the region being tracked. Then each time a new image in the sequences arrives * {@link #track(ImageGray)} is called. Be sure to check its return value to see if tracking * was successful or not. If tracking fails one frame it can recover. This is often the case where an object * becomes obscured and then visible again. *

* *

* NOTE: This implementation is based the description found in [1]. The spirit of the original algorithm is replicated, * but there are a several algorithmic changes. The most significant modifications are as follow; 1) The KLT tracker * used to update the rectangle does not use NCC features to validate a track or the median based outlier removal. * Instead a robust model matching algorithm finds the best fit motion. 2) The non-maximum suppression algorithm has * been changed so that it computes a more accurate local maximum and only uses local rectangles to * compute the average response. 3) Fern selection is done by selecting the N best using a likelihood ratio * conditional on the current image. 4) Learning only happens when a track is considered strong. * See code for more details. Note, this is not a port of the OpenTLD project. *

*

* [1] Zdenek Kalal, "Tracking-Learning-Detection" University of Surrey, April 2011 Phd Thesis. *

* * @author Peter Abeles */ @SuppressWarnings({"NullAway.Init"}) public class TldTracker, D extends ImageGray> { // specified configuration parameters for the tracker private final ConfigTld config; // selected region for output private final Rectangle2D_F64 targetRegion = new Rectangle2D_F64(); // region selected by KLT tracker // NOTE: The tracker updates a pointing point region. Rounding to the closest integer rectangle introduces errors // which can build up. private final Rectangle2D_F64 trackerRegion = new Rectangle2D_F64(); private final ImageRectangle trackerRegion_I32 = new ImageRectangle(); // Region used inside detection cascade private final DogArray cascadeRegions = new DogArray<>(ImageRectangle::new); // Image pyramid of input image private PyramidDiscrete imagePyramid; // Tracks features inside the current region private final TldRegionTracker tracking; // Adjusts the region using track information private final TldAdjustRegion adjustRegion; // Detects rectangles: Removes candidates which lack texture private final TldVarianceFilter variance; // Detects rectangles: Removes candidates don't match the fern descriptors private final TldFernClassifier fern; // Detects rectangles: Removes candidates don't match NCC descriptors private final TldTemplateMatching template; // code for detection cascade private final TldDetection detection; // did tracking totally fail and it needs to reacquire a track? private boolean reacquiring; // Is the region hypothesis valid and can be used for learning? private boolean valid; // is the current track considered a strong match and learning can occur? private boolean strongMatch; // area of the previous track before it lost track private double previousTrackArea; private final TldLearning learning; // is learning on or off private boolean performLearning = true; /** * Configures the TLD tracker * * @param config Configuration class which specifies the tracker's behavior */ public TldTracker( ConfigTld config, InterpolatePixelS interpolate, ImageGradient gradient, Class imageType, Class derivType ) { this.config = config; Random rand = new Random(config.randomSeed); PyramidKltTracker tracker = FactoryTrackerAlg.kltPyramid(config.trackerConfig, imageType, derivType); tracking = new TldRegionTracker<>(config.trackerGridWidth, config.trackerFeatureRadius, config.maximumErrorFB, gradient, tracker, imageType, derivType); adjustRegion = new TldAdjustRegion(config.motionIterations); variance = new TldVarianceFilter<>(imageType); template = new TldTemplateMatching<>(interpolate); fern = new TldFernClassifier<>( rand, config.numFerns, config.fernSize, 20, 0.5f, interpolate); detection = new TldDetection<>(fern, template, variance, config); learning = new TldLearning<>(rand, config, template, variance, fern, detection); } /** * Starts tracking the rectangular region. * * @param image First image in the sequence. * @param x0 Top-left corner of rectangle. x-axis * @param y0 Top-left corner of rectangle. y-axis * @param x1 Bottom-right corner of rectangle. x-axis * @param y1 Bottom-right corner of rectangle. y-axis */ public void initialize( T image, int x0, int y0, int x1, int y1 ) { if (imagePyramid == null || imagePyramid.getInputWidth() != image.width || imagePyramid.getInputHeight() != image.height) { int minSize = (config.trackerFeatureRadius*2 + 1)*5; ConfigDiscreteLevels configLevels = ConfigDiscreteLevels.minSize(minSize); imagePyramid = FactoryPyramid.discreteGaussian(configLevels, -1, 1, true, image.getImageType()); } imagePyramid.process(image); reacquiring = false; targetRegion.setTo(x0, y0, x1, y1); createCascadeRegion(image.width, image.height); template.reset(); fern.reset(); tracking.initialize(imagePyramid); variance.setImage(image); template.setImage(image); fern.setImage(image); adjustRegion.init(image.width, image.height); learning.initialLearning(targetRegion, cascadeRegions); strongMatch = true; previousTrackArea = targetRegion.area(); } /** * Used to set the location of the track without changing any appearance history. * * Move the track region but keep the same aspect ratio as it had before * So scale the region and re-center it */ public void setTrackerLocation( int x0, int y0, int x1, int y1 ) { int width = x1 - x0; int height = y1 - y0; // change change in scale double scale = (width/targetRegion.getWidth() + height/targetRegion.getHeight())/2.0; // new center location double centerX = (x0 + x1)/2.0; double centerY = (y0 + y1)/2.0; targetRegion.p0.x = centerX - scale*targetRegion.getWidth()/2.0; targetRegion.p1.x = targetRegion.p0.x + scale*targetRegion.getWidth(); targetRegion.p0.y = centerY - scale*targetRegion.getHeight()/2.0; targetRegion.p1.y = targetRegion.p0.y + scale*targetRegion.getHeight(); } /** * Creates a list containing all the regions which need to be tested */ private void createCascadeRegion( int imageWidth, int imageHeight ) { cascadeRegions.reset(); int rectWidth = (int)(targetRegion.getWidth() + 0.5); int rectHeight = (int)(targetRegion.getHeight() + 0.5); for (int scaleInt = -config.scaleSpread; scaleInt <= config.scaleSpread; scaleInt++) { // try several scales as specified in the paper double scale = Math.pow(1.2, scaleInt); // the actual rectangular region being tested at this scale int actualWidth = (int)(rectWidth*scale); int actualHeight = (int)(rectHeight*scale); // see if the region is too small or too large if (actualWidth < config.detectMinimumSide || actualHeight < config.detectMinimumSide) continue; if (actualWidth >= imageWidth || actualHeight >= imageHeight) continue; // step size at this scale int stepWidth = (int)(rectWidth*scale*0.1); int stepHeight = (int)(rectHeight*scale*0.1); if (stepWidth < 1) stepWidth = 1; if (stepHeight < 1) stepHeight = 1; // maximum allowed values int maxX = imageWidth - actualWidth; int maxY = imageHeight - actualHeight; // start at (1,1). Otherwise a more complex algorithm needs to be used for integral images for (int y0 = 1; y0 < maxY; y0 += stepHeight) { for (int x0 = 1; x0 < maxX; x0 += stepWidth) { ImageRectangle r = cascadeRegions.grow(); r.x0 = x0; r.y0 = y0; r.x1 = x0 + actualWidth; r.y1 = y0 + actualHeight; } } } } /** * Updates track region. * * @param image Next image in the sequence. * @return true if the object could be found and false if not */ public boolean track( T image ) { boolean success = true; valid = false; imagePyramid.process(image); template.setImage(image); variance.setImage(image); fern.setImage(image); if (reacquiring) { // It can reinitialize if there is a single detection detection.detectionCascade(cascadeRegions); if (detection.isSuccess() && !detection.isAmbiguous()) { TldRegion region = Objects.requireNonNull(detection.getBest()); reacquiring = false; valid = false; // set it to the detected region ImageRectangle r = region.rect; targetRegion.setTo(r.x0, r.y0, r.x1, r.y1); // get tracking running again tracking.initialize(imagePyramid); checkNewTrackStrong(region.confidence); } else { success = false; } } else { detection.detectionCascade(cascadeRegions); // update the previous track region using the tracker trackerRegion.setTo(targetRegion); boolean trackingWorked = tracking.process(imagePyramid, trackerRegion); trackingWorked &= adjustRegion.process(tracking.getPairs(), trackerRegion); TldHelperFunctions.convertRegion(trackerRegion, trackerRegion_I32); if (hypothesisFusion(trackingWorked, detection.isSuccess())) { // if it found a hypothesis and it is valid for learning, then learn if (valid && performLearning) { learning.updateLearning(targetRegion); } } else { reacquiring = true; success = false; } } if (strongMatch) { previousTrackArea = targetRegion.area(); } return success; } private void checkNewTrackStrong( double confidence ) { // see if there is very high confidence of a match strongMatch = confidence > config.confidenceThresholdStrong; // otherwise see if it's the expected shape if (!strongMatch) { double similarity = Math.abs((targetRegion.area() - previousTrackArea)/previousTrackArea); strongMatch = similarity <= config.thresholdSimilarArea; } } /** * Combines hypotheses from tracking and detection. * * @param trackingWorked If the sequential tracker updated the track region successfully or not * @return true a hypothesis was found, false if it failed to find a hypothesis */ protected boolean hypothesisFusion( boolean trackingWorked, boolean detectionWorked ) { valid = false; boolean uniqueDetection = detectionWorked && !detection.isAmbiguous(); double confidenceTarget; if (trackingWorked) { @Nullable TldRegion detectedRegion = detection.getBest(); // get the scores from tracking and detection double scoreTrack = template.computeConfidence(trackerRegion_I32); double scoreDetected = 0; if (uniqueDetection) { scoreDetected = Objects.requireNonNull(detectedRegion).confidence; } double adjustment = strongMatch ? 0.07 : 0.02; if (uniqueDetection && scoreDetected > scoreTrack + adjustment) { Objects.requireNonNull(detectedRegion); // if there is a unique detection and it has higher confidence than the // track region, use the detected region TldHelperFunctions.convertRegion(detectedRegion.rect, targetRegion); confidenceTarget = detectedRegion.confidence; // if it's far away from the current track, re-evaluate if it's a strongMatch checkNewTrackStrong(scoreDetected); } else { // Otherwise use the tracker region targetRegion.setTo(trackerRegion); confidenceTarget = scoreTrack; strongMatch |= confidenceTarget > config.confidenceThresholdStrong; // see if the most likely detected region overlaps the track region if (strongMatch && confidenceTarget >= config.confidenceThresholdLower) { valid = true; } } } else if (uniqueDetection) { // just go with the best detected region TldRegion detectedRegion = Objects.requireNonNull(detection.getBest()); TldHelperFunctions.convertRegion(detectedRegion.rect, targetRegion); confidenceTarget = detectedRegion.confidence; strongMatch = confidenceTarget > config.confidenceThresholdStrong; } else { return false; } return confidenceTarget >= config.confidenceAccept; } /** * Selects the scale for the image pyramid based on image size and feature size * * @return scales for image pyramid */ public static int[] selectPyramidScale( int imageWidth, int imageHeight, int minSize ) { int w = Math.max(imageWidth, imageHeight); int maxScale = w/minSize; int n = 1; int scale = 1; while (scale*2 < maxScale) { n++; scale *= 2; } int[] ret = new int[n]; scale = 1; for (int i = 0; i < n; i++) { ret[i] = scale; scale *= 2; } return ret; } public boolean isPerformLearning() { return performLearning; } public void setPerformLearning( boolean performLearning ) { this.performLearning = performLearning; } public TldTemplateMatching getTemplateMatching() { return template; } /** * Returns the estimated location of the target in the current image * * @return Location of the target */ public Rectangle2D_F64 getTargetRegion() { return targetRegion; } public Rectangle2D_F64 getTrackerRegion() { return trackerRegion; } public ConfigTld getConfig() { return config; } public TldDetection getDetection() { return detection; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy