boofcv.struct.kmeans.ComputeMeanTuple_F64 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-recognition Show documentation
Show all versions of boofcv-recognition Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
The newest version!
/*
* Copyright (c) 2022, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.struct.kmeans;
import boofcv.struct.feature.TupleDesc_F64;
import org.ddogleg.clustering.ComputeMeanClusters;
import org.ddogleg.struct.DogArray_I32;
import org.ddogleg.struct.FastAccess;
import org.ddogleg.struct.LArrayAccessor;
/**
* Update cluster assignments for {@link TupleDesc_F64} descriptors.
*
* @author Peter Abeles
*/
public class ComputeMeanTuple_F64 implements ComputeMeanClusters {
DogArray_I32 counts = new DogArray_I32();
@Override public void process( LArrayAccessor points,
DogArray_I32 assignments,
FastAccess clusters) {
if (assignments.size != points.size())
throw new IllegalArgumentException("Points and assignments need to be the same size");
// set the number of points in each cluster to zero and zero the clusters
counts.reset().resize(clusters.size, 0);
for (int i = 0; i < clusters.size; i++) {
clusters.get(i).fill(0.0);
}
// Compute the sum of all points in each cluster
for (int pointIdx = 0; pointIdx < points.size(); pointIdx++) {
double[] point = points.getTemp(pointIdx).data;
int clusterIdx = assignments.get(pointIdx);
counts.data[clusterIdx]++;
double[] cluster = clusters.get(clusterIdx).data;
for (int i = 0; i < point.length; i++) {
cluster[i] += point[i];
}
}
// Divide to get the average value in each cluster
for (int clusterIdx = 0; clusterIdx < clusters.size; clusterIdx++) {
double[] cluster = clusters.get(clusterIdx).data;
double divisor = counts.get(clusterIdx);
for (int i = 0; i < cluster.length; i++) {
cluster[i] /= divisor;
}
}
}
@Override public ComputeMeanClusters newInstanceThread() {
return new ComputeMeanTuple_F64();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy