boofcv.struct.kmeans.ComputeMeanTuple_MT_F64 Maven / Gradle / Ivy
/*
* Copyright (c) 2022, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.struct.kmeans;
import boofcv.concurrency.BoofConcurrency;
import boofcv.struct.feature.TupleDesc_F64;
import lombok.Getter;
import lombok.Setter;
import org.ddogleg.clustering.ComputeMeanClusters;
import org.ddogleg.struct.DogArray;
import org.ddogleg.struct.DogArray_I32;
import org.ddogleg.struct.FastAccess;
import org.ddogleg.struct.LArrayAccessor;
import pabeles.concurrency.GrowArray;
/**
* Concurrent implementation of {@link ComputeMeanTuple_F64}
*
* @author Peter Abeles
*/
public class ComputeMeanTuple_MT_F64 extends ComputeMeanTuple_F64 {
/**
* Minimum list size for it to use concurrent code. If a list is small it will run slower than the single
* thread version. By default this is zero since the optimal value is use case specific.
*/
@Getter @Setter int minimumForConcurrent = 0;
final int tupleDof;
GrowArray threadData;
public ComputeMeanTuple_MT_F64( int numElements) {
tupleDof = numElements;
threadData = new GrowArray<>(ThreadData::new);
}
@Override public void process( LArrayAccessor points,
DogArray_I32 assignments,
FastAccess clusters) {
// see if it should run the single thread version instead
if (points.size() < minimumForConcurrent) {
super.process(points, assignments, clusters);
return;
}
if (assignments.size != points.size())
throw new IllegalArgumentException("Points and assignments need to be the same size");
// Compute the sum of all points in each cluster
BoofConcurrency.loopBlocks(0, points.size(), threadData, (data,idx0,idx1)->{
final TupleDesc_F64 tuple = data.point;
final DogArray sums = data.clusterSums;
sums.resize(clusters.size);
for (int i = 0; i < sums.size; i++) {
sums.get(i).fill(0.0);
}
final DogArray_I32 counts = data.counts;
counts.reset().resize(sums.size, 0);
for (int pointIdx = idx0; pointIdx < idx1; pointIdx++) {
points.getCopy(pointIdx, tuple);
final double[] point = tuple.data;
int clusterIdx = assignments.get(pointIdx);
counts.data[clusterIdx]++;
double[] cluster = sums.get(clusterIdx).data;
for (int i = 0; i < point.length; i++) {
cluster[i] += point[i];
}
}
});
// Stitch results from threads back together
counts.reset().resize(clusters.size, 0);
for (int i = 0; i < clusters.size; i++) {
clusters.get(i).fill(0.0);
}
for (int threadIdx = 0; threadIdx < threadData.size(); threadIdx++) {
ThreadData data = threadData.get(threadIdx);
for (int clusterIdx = 0; clusterIdx < clusters.size; clusterIdx++) {
TupleDesc_F64 a = data.clusterSums.get(clusterIdx);
TupleDesc_F64 b = clusters.get(clusterIdx);
for (int i = 0; i < b.size(); i++) {
b.data[i] += a.data[i];
}
counts.data[clusterIdx] += data.counts.data[clusterIdx];
}
}
// Divide to get the average value in each cluster
for (int clusterIdx = 0; clusterIdx < clusters.size; clusterIdx++) {
double[] cluster = clusters.get(clusterIdx).data;
double divisor = counts.get(clusterIdx);
for (int i = 0; i < cluster.length; i++) {
cluster[i] /= divisor;
}
}
}
@Override public ComputeMeanClusters newInstanceThread() {
return new ComputeMeanTuple_MT_F64(tupleDof);
}
class ThreadData {
TupleDesc_F64 point = new TupleDesc_F64(tupleDof);
DogArray_I32 counts = new DogArray_I32();
DogArray clusterSums = new DogArray<>(()->new TupleDesc_F64(tupleDof));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy