All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.sfm.d3.VisOdomQuadPnP Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.sfm.d3;

import boofcv.abst.feature.associate.AssociateDescription2D;
import boofcv.abst.feature.detdesc.DetectDescribeMulti;
import boofcv.abst.feature.detdesc.PointDescSet;
import boofcv.abst.geo.TriangulateTwoViewsCalibrated;
import boofcv.alg.descriptor.UtilFeature;
import boofcv.alg.distort.LensDistortionOps;
import boofcv.struct.calib.StereoParameters;
import boofcv.struct.distort.Point2Transform2_F64;
import boofcv.struct.feature.AssociatedIndex;
import boofcv.struct.feature.TupleDesc;
import boofcv.struct.image.ImageGray;
import boofcv.struct.sfm.Stereo2D3D;
import georegression.geometry.ConvertRotation3D_F64;
import georegression.struct.EulerType;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import georegression.struct.se.Se3_F64;
import org.ddogleg.fitting.modelset.ModelFitter;
import org.ddogleg.fitting.modelset.ModelMatcher;
import org.ddogleg.struct.FastQueue;
import org.ddogleg.struct.GrowQueue_I32;

/**
 * Stereo visual odometry algorithm which associates image features across two stereo pairs for a total of four images.
 * Image features are first matched between left and right images while applying epipolar constraints.  Then the two
 * more recent sets of stereo  images are associated with each other in a left to left and right to right fashion.
 * Features which are consistently matched across all four images are saved in a list.  RANSAC is then used to
 * remove false positives and estimate camera motion using a
 * {@link boofcv.abst.geo.Estimate1ofPnP PnP} type algorithm.
 *
 * Motion is estimated using PNP algorithms.  These require that each image feature as its 3D coordinate estimated.
 * After a feature is associated between a stereo pair its 3D location is also estimated using triangulation.  Iterative
 * refinement can then be applied after motion has been estimated.
 *
 * Inside the code each camera is some times referred to by number. 0 = left camera previous frame. 1 = right
 * camera previous frame. 2 = left camera current frame. 3 = right camera current frame.
 *
 * Estimated motion is relative to left camera.
 *
 * @author Peter Abeles
 */
public class VisOdomQuadPnP,TD extends TupleDesc> {

	// used to estimate each feature's 3D location using a stereo pair
	private TriangulateTwoViewsCalibrated triangulate;

	// computes camera motion
	private ModelMatcher matcher;
	private ModelFitter modelRefiner;

	private FastQueue modelFitData = new FastQueue<>(10, Stereo2D3D.class, true);

	// Detects feature inside the image
	private DetectDescribeMulti detector;
	// Associates feature between the same camera
	private AssociateDescription2D assocSame;
	// Associates features from left to right camera
	private AssociateDescription2D assocL2R;

	// Set of associated features across all views
	private FastQueue quadViews = new FastQueue<>(10, QuadView.class, true);

	// features info extracted from the stereo pairs. 0 = previous 1 = current
	private ImageInfo featsLeft0,featsLeft1;
	private ImageInfo featsRight0,featsRight1;
	// Matched features between all four images.  One set of matches for each type of detected feature
	private SetMatches setMatches[];

	// stereo baseline going from left to right
	private Se3_F64 leftToRight = new Se3_F64();

	// convert for original image pixels into normalized image coordinates
	private Point2Transform2_F64 leftImageToNorm;
	private Point2Transform2_F64 rightImageToNorm;

	// transform from the current view to the old view (left camera)
	private Se3_F64 newToOld = new Se3_F64();
	// transform from the current camera view to the world frame
	private Se3_F64 leftCamToWorld = new Se3_F64();

	// number of frames that have been processed
	// is this the first frame
	private boolean first = true;

	// used to indicate which image features are being used
	private boolean usedLeft[] = new boolean[ 1 ];
	private boolean usedRight[] = new boolean[ 1];
	private int oldToNewLeft[] = new int[ 1 ];
	private int oldToNewRight[] = new int[ 1 ];

	/**
	 * Specifies internal algorithms
	 *
	 * @param detector Estimates image features
	 * @param assocSame Association algorithm used for left to left and right to right
	 * @param assocL2R Assocation algorithm used for left to right
	 * @param triangulate Used to estimate 3D location of a feature using stereo correspondence
	 * @param matcher Robust model estimation.  Often RANSAC
	 * @param modelRefiner Non-linear refinement of motion estimation
	 */
	public VisOdomQuadPnP(DetectDescribeMulti detector,
						  AssociateDescription2D assocSame , AssociateDescription2D assocL2R ,
						  TriangulateTwoViewsCalibrated triangulate,
						  ModelMatcher matcher,
						  ModelFitter modelRefiner )
	{
		this.detector = detector;
		this.assocSame = assocSame;
		this.assocL2R = assocL2R;
		this.triangulate = triangulate;
		this.matcher = matcher;
		this.modelRefiner = modelRefiner;

		setMatches = new SetMatches[ detector.getNumberOfSets() ];
		for( int i = 0; i < setMatches.length; i++ ) {
			setMatches[i] = new SetMatches();
		}

		featsLeft0 = new ImageInfo<>(detector);
		featsLeft1 = new ImageInfo<>(detector);
		featsRight0 = new ImageInfo<>(detector);
		featsRight1 = new ImageInfo<>(detector);
	}

	public void setCalibration(StereoParameters param) {

		param.rightToLeft.invert(leftToRight);
		leftImageToNorm = LensDistortionOps.narrow(param.left).undistort_F64(true,false);
		rightImageToNorm = LensDistortionOps.narrow(param.right).undistort_F64(true,false);
	}

	/**
	 * Resets the algorithm into its original state
	 */
	public void reset() {
		featsLeft0.reset();
		featsLeft1.reset();
		featsRight0.reset();
		featsRight1.reset();
		for( SetMatches m : setMatches )
			m.reset();
		newToOld.reset();
		leftCamToWorld.reset();
		first = true;
	}

	/**
	 * Estimates camera egomotion from the stereo pair
	 * @param left Image from left camera
	 * @param right Image from right camera
	 * @return true if motion was estimated and false if not
	 */
	public boolean process( T left , T right ) {

		if( first ) {
			associateL2R(left, right);
			first = false;
		} else {
//			long time0 = System.currentTimeMillis();
			associateL2R(left, right);
//			long time1 = System.currentTimeMillis();
			associateF2F();
//			long time2 = System.currentTimeMillis();
			cyclicConsistency();
//			long time3 = System.currentTimeMillis();
			if( !estimateMotion() )
				return false;
//			long time4 = System.currentTimeMillis();

//			System.out.println("timing: "+(time1-time0)+" "+(time2-time1)+" "+(time3-time2)+" "+(time4-time3));

		}

		return true;
	}

	/**
	 * Associates image features from the left and right camera together while applying epipolar constraints.
	 *
	 * @param left Image from left camera
	 * @param right Image from right camera
	 */
	private void associateL2R( T left , T right ) {
		// make the previous new observations into the new old ones
		ImageInfo tmp = featsLeft1;
		featsLeft1 = featsLeft0; featsLeft0 = tmp;
		tmp = featsRight1;
		featsRight1 = featsRight0; featsRight0 = tmp;

		// detect and associate features in the two images
		featsLeft1.reset();
		featsRight1.reset();

//		long time0 = System.currentTimeMillis();
		describeImage(left,featsLeft1);
		describeImage(right,featsRight1);
//		long time1 = System.currentTimeMillis();

		// detect and associate features in the current stereo pair
		for( int i = 0; i < detector.getNumberOfSets(); i++ ) {
			SetMatches matches = setMatches[i];
			matches.swap();
			matches.match2to3.reset();

			FastQueue leftLoc = featsLeft1.location[i];
			FastQueue rightLoc = featsRight1.location[i];

			assocL2R.setSource(leftLoc,featsLeft1.description[i]);
			assocL2R.setDestination(rightLoc, featsRight1.description[i]);
			assocL2R.associate();

			FastQueue found = assocL2R.getMatches();

//			removeUnassociated(leftLoc,featsLeft1.description[i],rightLoc,featsRight1.description[i],found);
			setMatches(matches.match2to3, found, leftLoc.size);
		}
//		long time2 = System.currentTimeMillis();
//		System.out.println("  desc "+(time1-time0)+" assoc "+(time2-time1));
	}

	private void removeUnassociated( FastQueue leftLoc , FastQueue leftDesc ,
									 FastQueue rightLoc , FastQueue rightDesc ,
									 FastQueue matches ) {

		int N = Math.max(leftLoc.size,rightLoc.size);
		if( usedLeft.length < N ) {
			usedLeft = new boolean[ N ];
			usedRight = new boolean[ N ];
			oldToNewLeft = new int[ N ];
			oldToNewRight = new int[ N ];
		} else {
			for( int i = 0; i < N; i++ ) {
				usedLeft[i] = false;
				usedRight[i] = false;
			}
		}

		for( int i = 0; i < matches.size; i++ ) {
			AssociatedIndex a = matches.get(i);
			usedLeft[a.src] = true;
			usedRight[a.dst] = true;
		}

		removeUnused(leftLoc, leftDesc, usedLeft, oldToNewLeft);
		removeUnused(rightLoc, rightDesc, usedRight, oldToNewRight);

		// update association list
		for( int i = 0; i < matches.size; i++ ) {
			AssociatedIndex a = matches.get(i);
			a.src = oldToNewLeft[a.src];
			a.dst = oldToNewRight[a.dst];
		}
	}

	private void removeUnused(FastQueue loc, FastQueue desc, boolean[] used, int[] oldToNew) {
		int count = 0;
		for( int i = 0; i < loc.size; i++ ) {
			if( used[i] ) {
				oldToNew[i] = count;
				if( count != i ) {
					Point2D_F64 a = loc.data[count];
					loc.data[count] = loc.data[i];
					loc.data[i] = a;

					TD d = desc.data[count];
					desc.data[count] = desc.data[i];
					desc.data[i] = d;
				}
				count++;
			} else {
				oldToNew[i] = -1;
			}
		}
		loc.size = desc.size = count;
	}

	/**
	 * Associates images between left and left and right and right images
	 */
	private void associateF2F()
	{
		quadViews.reset();

		for( int i = 0; i < detector.getNumberOfSets(); i++ ) {
			SetMatches matches = setMatches[i];

			// old left to new left
			assocSame.setSource(featsLeft0.location[i],featsLeft0.description[i]);
			assocSame.setDestination(featsLeft1.location[i], featsLeft1.description[i]);
			assocSame.associate();

			setMatches(matches.match0to2, assocSame.getMatches(), featsLeft0.location[i].size);

			// old right to new right
			assocSame.setSource(featsRight0.location[i],featsRight0.description[i]);
			assocSame.setDestination(featsRight1.location[i], featsRight1.description[i]);
			assocSame.associate();

			setMatches(matches.match1to3, assocSame.getMatches(), featsRight0.location[i].size);
		}
	}

	/**
	 * Create a list of features which have a consistent cycle of matches
	 * 0 -> 1 -> 3 and 0 -> 2 -> 3
	 */
	private void cyclicConsistency() {
		for( int i = 0; i < detector.getNumberOfSets(); i++ ) {
			FastQueue obs0 = featsLeft0.location[i];
			FastQueue obs1 = featsRight0.location[i];
			FastQueue obs2 = featsLeft1.location[i];
			FastQueue obs3 = featsRight1.location[i];

			SetMatches matches = setMatches[i];

			if( matches.match0to1.size != matches.match0to2.size )
				throw new RuntimeException("Failed sanity check");

			for( int j = 0; j < matches.match0to1.size; j++ ) {
				int indexIn1 = matches.match0to1.data[j];
				int indexIn2 = matches.match0to2.data[j];

				if( indexIn1 < 0 || indexIn2 < 0 )
					continue;

				int indexIn3a = matches.match1to3.data[indexIn1];
				int indexIn3b = matches.match2to3.data[indexIn2];

				if( indexIn3a < 0 || indexIn3b < 0 )
					continue;

				// consistent association to new right camera image
				if( indexIn3a == indexIn3b ) {
					QuadView v = quadViews.grow();
					v.v0 = obs0.get(j);
					v.v1 = obs1.get(indexIn1);
					v.v2 = obs2.get(indexIn2);
					v.v3 = obs3.get(indexIn3a);
				}
			}
		}
	}

	private void setMatches(GrowQueue_I32 matches,
							FastQueue found,
							int sizeSrc ) {
		matches.resize(sizeSrc);
		for( int j = 0; j < sizeSrc; j++ ) {
			matches.data[j] = -1;
		}
		for( int j = 0; j < found.size; j++ ) {
			AssociatedIndex a = found.get(j);
			matches.data[a.src] = a.dst;
		}
	}

	/**
	 * Computes image features and stores the results in info
	 */
	private void describeImage(T left , ImageInfo info ) {
		detector.process(left);
		for( int i = 0; i < detector.getNumberOfSets(); i++ ) {
			PointDescSet set = detector.getFeatureSet(i);
			FastQueue l = info.location[i];
			FastQueue d = info.description[i];

			for( int j = 0; j < set.getNumberOfFeatures(); j++ ) {
				l.grow().set( set.getLocation(j) );
				d.grow().setTo( set.getDescription(j) );
			}
		}
	}

	/**
	 * Estimates camera egomotion between the two most recent image frames
	 * @return
	 */
	private boolean estimateMotion() {
		modelFitData.reset();

		Point2D_F64 normLeft = new Point2D_F64();
		Point2D_F64 normRight = new Point2D_F64();

		// use 0 -> 1 stereo associations to estimate each feature's 3D position
		for( int i = 0; i < quadViews.size; i++ ) {
			QuadView obs = quadViews.get(i);

			// convert old stereo view to normalized coordinates
			leftImageToNorm.compute(obs.v0.x,obs.v0.y,normLeft);
			rightImageToNorm.compute(obs.v1.x,obs.v1.y,normRight);

			// compute 3D location using triangulation
			triangulate.triangulate(normLeft,normRight,leftToRight,obs.X);

			// add to data set for fitting if not at infinity
			if( !Double.isInfinite(obs.X.normSq()) ) {
				Stereo2D3D data = modelFitData.grow();
				leftImageToNorm.compute(obs.v2.x,obs.v2.y,data.leftObs);
				rightImageToNorm.compute(obs.v3.x,obs.v3.y,data.rightObs);
				data.location.set(obs.X);
			}
		}

		// robustly match the data
		if( !matcher.process(modelFitData.toList()) )
			return false;

		Se3_F64 oldToNew = matcher.getModelParameters();

//		System.out.println("matcher rot = "+toString(oldToNew));
		// optionally refine the results
		if( modelRefiner != null ) {
			Se3_F64 found = new Se3_F64();
			if( modelRefiner.fitModel(matcher.getMatchSet(), oldToNew, found) ) {
//				System.out.println("matcher rot = "+toString(found));
				found.invert(newToOld);
			} else {
				oldToNew.invert(newToOld);
//				System.out.println("Fit failed!");
			}
		} else {
			oldToNew.invert(newToOld);
		}

		// compound the just found motion with the previously found motion
		Se3_F64 temp = new Se3_F64();
		newToOld.concat(leftCamToWorld, temp);
		leftCamToWorld.set(temp);

		return true;
	}

	private String toString( Se3_F64 motion ) {
		double euler[] = ConvertRotation3D_F64.matrixToEuler(motion.getR(), EulerType.XYZ,(double[])null);
		return String.format("%5e %5e %5e",euler[0],euler[1],euler[2]);
	}

	public ModelMatcher getMatcher() {
		return matcher;
	}

	public FastQueue getQuadViews() {
		return quadViews;
	}

	public Se3_F64 getLeftToWorld() {
		return leftCamToWorld;
	}

	/**
	 * Storage for detected features inside an image
	 */
	public static class ImageInfo
	{
		FastQueue location[];
		FastQueue description[];

		public ImageInfo( DetectDescribeMulti detector ) {
			location = new FastQueue[ detector.getNumberOfSets() ];
			description = new FastQueue[ detector.getNumberOfSets() ];

			for( int i = 0; i < location.length; i++ ) {
				location[i] = new FastQueue<>(100, Point2D_F64.class, true);
				description[i] = UtilFeature.createQueue(detector,100);
			}
		}

		public void reset() {
			for( int i = 0; i < location.length; i++ ) {
				location[i].reset();
				description[i].reset();
			}
		}
	}

	/**
	 * Correspondences between images
	 */
	public static class SetMatches {
		// previous left to previous right
		GrowQueue_I32 match0to1 = new GrowQueue_I32(10);
		// previous left to current left
		GrowQueue_I32 match0to2 = new GrowQueue_I32(10);
		// current left to current right
		GrowQueue_I32 match2to3 = new GrowQueue_I32(10);
		// previous right to current right
		GrowQueue_I32 match1to3 = new GrowQueue_I32(10);

		public void swap() {
			GrowQueue_I32 tmp;

			tmp = match2to3;
			match2to3 = match0to1;
			match0to1 = tmp;
		}

		public void reset() {
			match0to1.reset();
			match0to2.reset();
			match2to3.reset();
			match1to3.reset();
		}
	}

	/**
	 * 3D coordinate of the feature and its observed location in each image
	 */
	public static class QuadView
	{
		// 3D coordinate in old camera view
		public Point3D_F64 X = new Point3D_F64();
		// pixel observation in each camera view
		public Point2D_F64 v0,v1,v2,v3;

	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy