Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.examples.features;
import boofcv.alg.filter.binary.GThresholdImageOps;
import boofcv.alg.filter.binary.ThresholdImageOps;
import boofcv.alg.shapes.polygon.DetectPolygonBinaryGrayRefine;
import boofcv.alg.shapes.polygon.DetectPolygonFromContour;
import boofcv.factory.shape.ConfigPolygonDetector;
import boofcv.factory.shape.FactoryShapeDetector;
import boofcv.gui.ListDisplayPanel;
import boofcv.gui.feature.VisualizeShapes;
import boofcv.gui.image.ShowImages;
import boofcv.io.UtilIO;
import boofcv.io.image.ConvertBufferedImage;
import boofcv.io.image.UtilImageIO;
import boofcv.struct.image.GrayU8;
import georegression.struct.shapes.Polygon2D_F64;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
/**
* Example of how to use {@link DetectPolygonFromContour} to find black polygons in an image. This algorithm
* is the basis for several fiducial detectors in BoofCV and fits the polygon to sub-pixel accuracy and produces
* reasonable results on blurred images too. It is highly configurable and can even sparsely fit polygons
* in a distorted image. Meaning the expensive step of undistorting the entire image is not needed.
*
* @author Peter Abeles
*/
public class ExampleDetectBlackPolygon {
public static void main(String[] args) {
String imagesConvex[] = new String[]{
"shapes/polygons01.jpg",
"shapes/shapes02.png",
"fiducial/image/examples/image01.jpg"};
String imagesConcave[] = new String[]{
"shapes/concave01.jpg"};
ListDisplayPanel panel = new ListDisplayPanel();
// first configure the detector to only detect convex shapes with 3 to 7 sides
ConfigPolygonDetector config = new ConfigPolygonDetector(3,7);
DetectPolygonBinaryGrayRefine detector = FactoryShapeDetector.polygon(config, GrayU8.class);
processImages(imagesConvex, detector, panel);
// now lets detect concave shapes with many sides
config.detector.contourToPoly.maximumSides = 12;
config.detector.contourToPoly.convex = false;
detector = FactoryShapeDetector.polygon(config, GrayU8.class);
processImages(imagesConcave, detector, panel);
ShowImages.showWindow(panel,"Found Polygons",true);
}
private static void processImages(String[] files,
DetectPolygonBinaryGrayRefine detector,
ListDisplayPanel panel)
{
for( String fileName : files ) {
BufferedImage image = UtilImageIO.loadImage(UtilIO.pathExample(fileName));
GrayU8 input = ConvertBufferedImage.convertFromSingle(image, null, GrayU8.class);
GrayU8 binary = new GrayU8(input.width,input.height);
// Binarization is done outside to allows creative tricks. For example, when applied to a chessboard
// pattern where square touch each other, the binary image is eroded first so that they don't touch.
// The squares are expanded automatically during the subpixel optimization step.
int threshold = (int)GThresholdImageOps.computeOtsu(input, 0, 255);
ThresholdImageOps.threshold(input, binary, threshold, true);
// it takes in a grey scale image and binary image
// the binary image is used to do a crude polygon fit, then the grey image is used to refine the lines
// using a sub-pixel algorithm
detector.process(input, binary);
// visualize results by drawing red polygons
java.util.List found = detector.getPolygons(null,null);
Graphics2D g2 = image.createGraphics();
g2.setStroke(new BasicStroke(3));
for (int i = 0; i < found.size(); i++) {
g2.setColor(Color.RED);
VisualizeShapes.drawPolygon(found.get(i), true, g2, true);
g2.setColor(Color.CYAN);
VisualizeShapes.drawPolygonCorners(found.get(i), 2, g2, true);
}
panel.addImage(image,new File(fileName).getName());
}
}
}