boofcv.examples.imageprocessing.ExampleBinaryOps Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of examples Show documentation
Show all versions of examples Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.examples.imageprocessing;
import boofcv.alg.filter.binary.BinaryImageOps;
import boofcv.alg.filter.binary.Contour;
import boofcv.alg.filter.binary.GThresholdImageOps;
import boofcv.alg.filter.binary.ThresholdImageOps;
import boofcv.gui.ListDisplayPanel;
import boofcv.gui.binary.VisualizeBinaryData;
import boofcv.gui.image.ShowImages;
import boofcv.io.UtilIO;
import boofcv.io.image.ConvertBufferedImage;
import boofcv.io.image.UtilImageIO;
import boofcv.struct.ConnectRule;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayS32;
import boofcv.struct.image.GrayU8;
import java.awt.image.BufferedImage;
import java.util.List;
/**
* Demonstrates how to create binary images by thresholding, applying binary morphological operations, and
* then extracting detected features by finding their contours.
*
* @see boofcv.examples.segmentation.ExampleThresholding
*
* @author Peter Abeles
*/
public class ExampleBinaryOps {
public static void main( String args[] ) {
// load and convert the image into a usable format
BufferedImage image = UtilImageIO.loadImage(UtilIO.pathExample("particles01.jpg"));
// convert into a usable format
GrayF32 input = ConvertBufferedImage.convertFromSingle(image, null, GrayF32.class);
GrayU8 binary = new GrayU8(input.width,input.height);
GrayS32 label = new GrayS32(input.width,input.height);
// Select a global threshold using Otsu's method.
double threshold = GThresholdImageOps.computeOtsu(input, 0, 255);
// Apply the threshold to create a binary image
ThresholdImageOps.threshold(input,binary,(float)threshold,true);
// remove small blobs through erosion and dilation
// The null in the input indicates that it should internally declare the work image it needs
// this is less efficient, but easier to code.
GrayU8 filtered = BinaryImageOps.erode8(binary, 1, null);
filtered = BinaryImageOps.dilate8(filtered, 1, null);
// Detect blobs inside the image using an 8-connect rule
List contours = BinaryImageOps.contour(filtered, ConnectRule.EIGHT, label);
// colors of contours
int colorExternal = 0xFFFFFF;
int colorInternal = 0xFF2020;
// display the results
BufferedImage visualBinary = VisualizeBinaryData.renderBinary(binary, false, null);
BufferedImage visualFiltered = VisualizeBinaryData.renderBinary(filtered, false, null);
BufferedImage visualLabel = VisualizeBinaryData.renderLabeledBG(label, contours.size(), null);
BufferedImage visualContour = VisualizeBinaryData.renderContours(contours, colorExternal, colorInternal,
input.width, input.height, null);
ListDisplayPanel panel = new ListDisplayPanel();
panel.addImage(visualBinary, "Binary Original");
panel.addImage(visualFiltered, "Binary Filtered");
panel.addImage(visualLabel, "Labeled Blobs");
panel.addImage(visualContour, "Contours");
ShowImages.showWindow(panel,"Binary Operations",true);
}
}