boofcv.examples.segmentation.ExampleWatershedWithSeeds Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of examples Show documentation
Show all versions of examples Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.examples.segmentation;
import boofcv.alg.filter.binary.BinaryImageOps;
import boofcv.alg.filter.binary.ThresholdImageOps;
import boofcv.alg.misc.ImageStatistics;
import boofcv.alg.segmentation.watershed.WatershedVincentSoille1991;
import boofcv.factory.segmentation.FactorySegmentationAlg;
import boofcv.gui.ListDisplayPanel;
import boofcv.gui.binary.VisualizeBinaryData;
import boofcv.gui.feature.VisualizeRegions;
import boofcv.gui.image.ShowImages;
import boofcv.io.UtilIO;
import boofcv.io.image.ConvertBufferedImage;
import boofcv.io.image.UtilImageIO;
import boofcv.struct.ConnectRule;
import boofcv.struct.image.GrayS32;
import boofcv.struct.image.GrayU8;
import java.awt.image.BufferedImage;
/**
* Watershed image segmentation will often produce an excessive number of regions since each local minimum is the
* seed which creates a new region. To get around this problem you can provide the seeds manually. The down side
* to providing manual seeds is that it is no longer a general purpose algorithm and requires knowledge of the image
* structure to provide the seeds. This example demonstrates how to do this.
*
* @author Peter Abeles
*/
public class ExampleWatershedWithSeeds {
public static void main(String[] args) {
BufferedImage image = UtilImageIO.loadImage(UtilIO.pathExample("particles01.jpg"));
GrayU8 input = ConvertBufferedImage.convertFromSingle(image, null, GrayU8.class);
// declare working data
GrayU8 binary = new GrayU8(input.width,input.height);
GrayS32 label = new GrayS32(input.width,input.height);
// Try using the mean pixel value to create a binary image then erode it to separate the particles from
// each other
double mean = ImageStatistics.mean(input);
ThresholdImageOps.threshold(input, binary, (int) mean, true);
GrayU8 filtered = BinaryImageOps.erode8(binary, 2, null);
int numRegions = BinaryImageOps.contour(filtered, ConnectRule.EIGHT, label).size() + 1;
// +1 to regions because contour only counts blobs and not the background
// The labeled image can be used as is. A precondition for seeded watershed is that all seeds have an
// ID > 0. Luckily, a value of 0 was used for background pixels in the contour algorithm.
WatershedVincentSoille1991 watershed = FactorySegmentationAlg.watershed(ConnectRule.FOUR);
watershed.process(input,label);
GrayS32 output = watershed.getOutput();
BufferedImage outLabeled = VisualizeBinaryData.renderLabeledBG(label, numRegions, null);
VisualizeRegions.watersheds(output,image,1);
// Removing the watersheds and update the region count
// NOTE: watershed.getTotalRegions() does not return correct results if seeds are used!
watershed.removeWatersheds();
numRegions -= 1;
BufferedImage outRegions = VisualizeRegions.regions(output,numRegions,null);
ListDisplayPanel gui = new ListDisplayPanel();
gui.addImage(image, "Watersheds");
gui.addImage(outRegions, "Regions");
gui.addImage(outLabeled, "Seeds");
ShowImages.showWindow(gui, "Watershed", true);
// Additional processing would be needed for this example to be really useful.
// The watersheds can be used to characterize the background while the seed binary image the particles
// From this the particles could be more accurately classified by assigning each pixel one of the two
// just mentioned groups based distance
}
}